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Abstract

The objective of the present thesis concerns Jacobi-type constructs that exhibit the main
properties of standard Jacobi structures. This objective is fulfilled via three directions, as
follows.

First, the Jacobi concept is scrutinized at the linear (algebraic) level by studying the
category of Jacobi vector spaces. It is shown that, as in the smooth situation, it encompasses
both locally conformal and contact linear structures. There are touched several aspects in
this endeavor, like transitivity, Poissonization, coisotropy, product structures, transversals.
The cornerstone of the first direction is represented by the linear version of contact dual
pairs, which are deeply scrutinized.

Second, combining the twisted Jacobi pair [62] with that of a Poisson structure with
a (closed) 3-form background [70], alias twisted Poisson, a new structure is proposed and
investigated. This is called a Jacobi pair with background and consists of a bi-vector, and
a vector field in the presence of a background made up of a 3-form and a 2-form. This
new concept ‘captures’ twisted Jacobi pairs via exact backgrounds (through an appropriate
homological derivation). It is shown that the manifolds equipped with such pairs enjoy the
main properties of twisted Jacobi pairs: i) are in a one-to-one relation with the homogeneous
Poisson structures with arbitrary 3-form background, and ii) display completely integrable
characteristic distributions. This direction concludes with the analysis of twisted contact
dual pairs.

Third, starting from the line bundle formulation of the Jacobi pair, the Jacobi bundle
with background is introduced and studied. This is the natural global formulation of Jacobi
pair with background concept. The structure ‘lives’ on (generally) non-trivial line bundles
L → M and is equipped with a first-order bi-differential operator on the line bundle J ∈
D2L and an L-valued Atiyah 3-form Ψ ∈ Ω3

L that are ‘compatible’ via a Maurer-Cartan-
like consistency condition. Here, the exactness of twisted Jacobi bundles come from the
exactness of the Atiyah 3-form Ψ ∈ Ω3

L with respect to the homological degree 1-derivation
in der-complex, dL. It is shown that Jacobi bundles with background exhibit completely
integrable characteristic distributions with characteristic leaves transitive Jacobi structures
with background. The direction concludes with analyzing transitive Jacobi bundles with
background establishing their connection with locally conformal symplectic structures with
background and twisted contact structures.
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Chapter 1

Introduction

Devised in the middle of the XIX-th century as the canonical first-order formulation for La-
grangian mechanics, Hamiltonian mechanics has been proved to be one of the most inspiring
ideas for our days’ fundamental science. In physics, this was the key ingredient of the quan-
tization of systems admitting classical description [25, 26], and also, via Dirac algorithm, it
put on stage the systems endowed with gauge symmetries. In mathematics, it has offered
an ‘odd’ version to Riemannian geometry– the symplectic geometry, whose contravariant
(possible degenerate) version– Poisson geometry sits, through a canonical structure, at the
foundation of various quantization schemes [7, 35].

In the early ’70s, after the advent of infinitesimal version of the groupoids [66], the
idea of a Poisson-like bracket has been ‘extended’ to the sections in a vector bundle [42],
giving rise to the local Lie algebras. Soon after that, Jacobi structures have emerged [46,
33]. Initially, the concept, known today as the Jacobi pair [23, 73], was expressed by a
bi-vector and a vector field. Jacobi pairs enjoy two main properties: i) are in a one-to-one
relation with the homogeneous Poisson structures with arbitrary 3-form background, and
ii) display integrable characteristic distributions with characteristic leaves either cooriented
locally conformal symplectic manifolds or cooriented contact ones. The deep understanding
of Lie algebroids [53, 22], supplemented with a fine analysis [56] of the old concept of local
Lie algebra [42], have currently led to the (globally unifying) line bundle perspective on
Jacobi structures [23, 32, 56, 73]. Within this framework, the Jacobi pairs are nothing but
Jacobi structures over trivial line bundles.

The issue of deforming Lie algebras, a problem that has been exploited in physics both
at the construction of consistent interactions between gauge fields [3] and the quantization
within the BV scheme [30], further provoked the birth of twisted-type structures like Poisson
[70] and Jacobi [62]. It is noteworthy that the second kind of twisting, namely Jacobi,
has been done [62] within the trivial line bundle, the reason for why such structures will
be addressed as twisted Jacobi pairs in the sequel. Using the powerful machinery of the
integrability of Dirac(-Jacobi) structures [21, 79], it has been shown that both twisted Poisson
[70] and twisted Jacobi [62] display characteristic distributions that are completely (Stefan-
Sussmann [71, 72]) integrable.

The present work plants a little mustard seed in this fruitful field of the Jacobi structures
by studying new Jacobi-like structures and some of their dual pairs. The aim is achieved in
three steps. First, motivated by the active role played by linear algebra in differential geom-
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8 CHAPTER 1. INTRODUCTION

etry, both at the level of conceptualization (e.g. the construction of vector bundles equipped
with various structures) and organization, we analyze some linear structures involved in
modern geometric constructions, like Poisson, symplectic, contact, and Jacobi structures.
Second, we introduce and investigate a new kind of Jacobi pair, namely a Jacobi pair with
background, which, in particular, encompasses the twisted Jacobi notion. Third, we analyze
from the global perspective (line bundle formulation) the previous Jacobi-like structure.

The thesis is structured on four chapters and a paragraph, as follows.

The paragraph contains the main conventions and notations adopted throughout the
content.

Chapter 2 is dedicated to linear (algebraic) Jacobi structures and to linear contact dual
pairs. The motivation of this chapter arises from the main goal of the present work as
linear Jacobi structures offer valuable information on their corresponding smooth versions.
Initially, we give a linear (algebraic) setting for Jacobi structures (Jacobi vector spaces)
that comes from the pointwise perspective of a Jacobi pair. This is shown to be a specific
instance of a more general one (L-Jacobi vector space) displayed by the same ‘surgery’
but in a Jacobi (line) bundle. In the remaining part of the chapter, we focus only on the
Jacobi vector spaces and their relations with contact/locally conformal symplectic/Poisson
structures. Then, we introduce and analyze the concept of linear contact pair. Concretely,
starting with the orthogonality in contact vector spaces, we define the linear contact pair
in a ‘standard’ manner via the contact orthogonality of the kernels corresponding to the
‘legs’. We show that its symplectization is a linear (symplectic) dual pair. Also, it is shown
that linear contact pairs enjoy of nice characteristic subspace correspondences and of Jacobi
transversal correspondences. The original contribution contained in this chapter is based on
[14, 15].

Chapter 3 is devoted to a new concept–Jacobi structure with background. Due to the
special framework–trivial line bundle, such structures consist of pairs of geometric objects
(one 2-vector field and one vector field) and are addressed as Jacobi pairs with background.
The twisted Jacobi pairs and the Poisson structures with background are special cases of this
new construct. Also, here, the completion of the category whose objects are the Jacobi man-
ifolds with background (manifolds endowed with Jacobi pairs with background) is done. It
is adapted and investigated the notions of Jacobi map and conformal Jacobi morphism [62].
Further, we prove that there is a one-to-one correspondence between Jacobi manifolds with
background and homogeneous Poisson manifolds with background. Concerning the charac-
teristic distribution associated with a Jacobi structure with background, we prove that it is
completely integrable with its characteristic leaves consisting in either locally conformal sym-
plectic manifolds with background or twisted contact manifolds. The chapter is concluded
with twisted dual pairs in the symplectic and contact setting. We emphasize two results,
one concerning the characteristic leaf correspondence and the other about ”Poissonization”
of a twisted contact dual pair. The original contribution to this chapter is contained in
[16, 17, 18].

Chapter 4 is dedicated to the global (non-trivial) line bundle version of the Jacobi struc-
ture with background analyzed in the previous chapter. The strategy consists of four steps
as follows. First, we make a trip in the realm of Lie and Jacobi algebroids, where we collect
their standard characterizations [31, 32]. Unavoidable, this includes the Atiyah algebroid
of the derivations of a line bundle [43]. For connecting the line-bundle formulations of the
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analyzed Jacobi bundles with the ‘pairs’, the previously mentioned results are done also in
the trivial line bundle context [73]. Second, for self-consistency reasons, we shortly address
the Jacobi bundles [56] and their characteristic distributions integrability [23, 73]. Third,
we approach twisted Jacobi bundles. In the literature, this has been previously done only
in the context of the trivial line bundle, i.e., in our language, twisted Jacobi pairs. Here, we
collect the main results concerning transitive twisted Jacobi bundles and the integrability of
twisted Jacobi bundles. Fourth, we introduce and analyze Jacobi bundles with background.
It is shown that the trivial line bundle version of a Jacobi bundle with background is noth-
ing but a Jacobi pair with background. Then, the analysis of transitive Jacobi bundles
with background allows us to conclude that they are equivalent to either a locally conformal
symplectic structure with background or a twisted conformal structure. Finally, by using
the fact that locally, any Jacobi bundle with background is equivalent to a Jacobi pair with
background, we sketch the proof of the integrability of Jacobi bundles with background. The
original results contained in the present chapter are based on [16, 19, 20].
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Conventions and notations

MAN. All manifolds in this work are assumed to be smooth and finite-dimensional. These
are denoted by the underlying set, not specifying the smooth structure, i.e., the smooth
manifold (M,AM) is addressed as M . For a given manifold M , by F(M) we mean the
R-algebra of real smooth functions defined over M . Also, we denote by X•(M) and Ω•(M)
the graded commutative unital algebras of smooth multivector fields and smooth differential
forms respectively,

X•(M) = F(M)⊕ X1(M)⊕ X2(M)⊕ · · · , Ω•(M) = F(M)⊕ Ω1(M)⊕ Ω2(M)⊕ · · · .

The algebras are dual to each other i.e. there exists the non-degenerate linear map

〈•, •〉 : Ω•(M)× X•(M)→ F(M), 〈ω1 ∧ · · · ∧ ωp, X1 ∧ · · · ∧Xp〉 := det (〈ωi, Xj〉) .

We denote by [•, •] the Schouten-Nijenhuis bracket among multivector fields, structure that
organizes the graded, graded commutative, associative and unital algebra (X•(M),∧) as
Gerstenhaber algebra. Let M1 and M2 be two smooth manifolds and F ∈ C∞ (M1,M2) be a
smooth map. We denote by F∗ and F ∗ the tangent and the pull-back maps respectively

(F∗X) f := X (f ◦ F ) , 〈F ∗ω,X〉 := 〈ω, F∗X〉, X ∈ X1(M1), ω ∈ Ω1(M2), f ∈ F(M2).

VB. Throughout this work only finite-dimensional vector bundles appear. A vector bundle
is addressed as E →M . Meanwhile, its F(M)-module of sections is denoted by Γ(E). The
vector bundle morphisms between vector bundles with different base manifolds are expressed
as pairs of maps (F, F ), where the first entry relate the total spaces while the second maps
the base manifolds. When the vector bundles have the same base manifold then the vector
bundle morphisms (F, id) are addressed only by F . For a given vector bundle morphism F
between the vector bundles E1 →M and E2 →M the same symbol is used for the associated
morphism of graded commutative unital algebras F : Γ (∧•E1)→ Γ (∧•E2). In the algebras
Γ (∧•E) and Γ (∧•E∗) that are dual to each other

〈•, •〉 : Γ (∧•E∗)× Γ (∧•E)→ F(M), 〈ω1 ∧ · · · ∧ ωp, α1 ∧ · · · ∧ αp〉 := det (〈ωi, αj〉) ,

we denote by iP the right inner products in Γ (∧•E∗) by homogeneous elements P ∈ Γ (∧•E),

〈iPω,Q〉 := 〈ω, P ∧Q〉

and by jω the left inner products in Γ (∧•E) by homogeneous elements ω ∈ Γ (∧•E∗),

〈θ, jωP 〉 := 〈θ ∧ ω, P 〉.

11



12 CHAPTER 1. INTRODUCTION

Within the specified context, we display the isomorphisms

Γ(E) = (Γ(E∗))∗, ∧pΓ(E) = Γ(∧pE) = (Γ(∧pE∗))∗ = (∧pΓ(E∗))∗ = ∧p(Γ(E∗))∗,

in terms of which, sections in the vector bundle ∧pE, P ∈ Γ(∧pE), are also understood as
multi-linear and skew-symmetric maps

P : Γ(E∗)× · · · × Γ(E∗)→ F(M), P (θ1, · · · , θp) := 〈θ1 ∧ · · · ∧ θp, P 〉.

The same interpretation we understand for sections in dual vector bundle ∧pE∗. From this
perspective, we adopt the conventions from [55] regarding the ‘musical’ maps

] : Γ(∧2E)→ Γ(E∗ ⊗ E), P 7→ P ], P ]θ := −jθP, θ ∈ Γ(E∗),
[ : Γ(∧2E∗)→ Γ(E ⊗ E∗), ω 7→ ω[, ω[X := −iXω, X ∈ Γ(E).



Chapter 2

Linear (algebraic) Jacobi structures
and dual pairs

Motivated by the active role played by linear algebra in differential geometry, both at the
level of conceptualization (e.g. the construction of vector bundles equipped with various
structures) and organization, in this chapter, we are going to discuss about some linear
structures involved in modern geometric constructions, like Poisson, symplectic, contact,
and Jacobi structures. Concretely, in the present chapter, we study those properties of
linear algebraic nature which sit at the foundation of Poisson/symplectic/contact/Jacobi
geometries. Of course, the linear aspects do not ‘see’ the smooth part, losing important fea-
tures (e.g. brackets), but display many interesting features (e.g. dual pairs and transversals).
The present chapter represents linear ‘prolegomena’ for the next part of the thesis, and, at
the same time, it gives a consistent development of a linear version of the contact dual pair
introduced in [73].

We introduce the broadest definition of contact and Jacobi structures1, but we scrutinize
the linear versions of contact/Jacobi structures with trivialized line bundles (i.e. cooriented).
The linear Poisson structures [51] on a vector space V are bi-vectors π ∈ Λ2V , while the sym-
plectic structures on V (non-degenerate 2-forms in Λ2V ∗) are their non-degenerate versions.
The linear versions of Jacobi structures with trivialized line bundles are simply pairs (π,E),
with bi-vector π ∈ Λ2V and vector E ∈ V , while the non-degenerate Jacobi structures are
the contact structures. The broadest definition of Jacobi structures, which are addressed as
L(line)-Jacobi structures [15], makes use of an L-vector space that consists of a line, L, and
a short exact sequence of vector spaces,

D : 0 −→ R −→ D −→ V −→ 0.

Within this context, a L-Jacobi structure is done by an L-valued 2-form. When L = R and
D admits a split, the L-Jacobi structure reduces to a Jacobi one.

The linear version of a contact structure has been introduced in [52]: a (contact) hyper-
plane H endowed with a V/H-valued non-degenerate skew-symmetric (curvature) 2-form,
ωH . This can be captured in the L-Jacobi framework whenever the L-valued 2-form is non-
degenerate. This precisely means that the L-contact structure is a broader concept that

1We are indebted to L. Vitagliano and A. Tortorella for helping us with pertinent remarks concerning
the most general context for Jacobi structures.
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14 CHAPTER 2. LINEAR (ALGEBRAIC) JACOBI STRUCTURES AND DUAL PAIRS

encompasses [15] Loose’s contact one. The cooriented counterpart involves the choice of a
(Reeb) vector E outside H, so that the previously mentioned non-degenerate skew-symmetric
(curvature) 2-form becomes ωH ∈ Λ2H∗. An equivalent definition of linear contact struc-
tures, which reminds of the concept of contact differential form, involves a pair (θ, ω) with
1-form θ and 2-form ω which plays the role of the differential of the contact form θ, with the
property that the top degree form θ ∧ ωm is non-zero.

In the linear Poisson setting the Hamiltonian vectors are associated to covectors, namely
Xα = π]α, but for linear Jacobi structures they are of the form XA = aE + π]α for A =
(α, a) ∈ V ∗ × R. The characteristic subspace of the Jacobi vector space V , generated by
the Hamiltonian vectors, inherits in a natural way either a linear contact structure (if odd
dimensional), or a linear version of the locally conformally symplectic (lcs) structure (if
even dimensional). Thus, totally analogous to the differential geometric setting in [24], the
transitive linear Jacobi structures are either contact or locally conformally symplectic. The
pairs A = (α, a), with a ∈ R× also serve as conformal factors, both for conformal equivalence
of linear Jacobi structures and for conformal Jacobi maps.

In this chapter we touch also several other aspects of linear Jacobi structures, like Pois-
sonization, coisotropy, product structures, and especially transversals. In the literature the
Poisson/Jacobi transversals can be also found under the name of cosymplectic submanifolds
[83] or Poisson/Jacobi submanifolds of the second kind [82, 24, 54]. We define the linear Ja-
cobi transversals as subspaces that admit a direct sum decomposition V = X ⊕ π]X◦. They
inherit in a natural way Jacobi structures. The Jacobi transversals of contact/lcs vector
spaces are their contact/lcs subspaces.

Our main focus is on the linear version of the contact dual pairs in [73]. The symplectic
dual pair [82] has a linear counterpart that involves a symplectic vector space and a pair of
Poisson vector spaces [11], namely it is a pair of linear Poisson maps

(W,ω)
ψ1

yy

ψ2

%%
(W1, π1) (W2, π2)

(2.1)

that satisfy the orthogonality condition (Kerψ1)ω = Kerψ2. Let V1, V2 be a pair of Jacobi
vector spaces equipped with a pair of conformal Jacobi maps defined on the same contact
vector space V ,

(V, ωH , E)
ϕ1

xx

ϕ2

&&
(W1, π1) (W2, π2)

(2.2)

with conformal factors Ai = (αi, ai) ∈ V ∗ × R×. They form a linear contact dual pair if the
following conditions are satisfied:

1. XA1 ∈ Kerϕ2, XA2 ∈ Kerϕ1,

2. (H ∩Kerϕ1)ωH = H ∩ Kerϕ2 (by 1., the subspaces H and Kerϕi intersect transver-
sally),
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3. π(α1, α2) = α2(XA1)− α1(XA2),

with (π,E) the induced Jacobi structure on the contact vector space V .
The symplectization of a linear contact dual pair (2.2) is a linear symplectic dual pair

(3.97). The contact dual pair is called full if the maps ϕ1, ϕ2 are surjective, in which case
there exists a natural correspondence between the contact/lcs structures on the characteristic
subspaces of the Jacobi vector spaces V1 and V2, as shown in Theorem 2.2.14. With two
linear Jacobi transversals X1 ⊆ V1 and X2 ⊆ V2 in a given linear contact dual pair (2.2) on
V , we build in Theorem 2.3.17 a new contact dual pair on ϕ−1

1 (X1) ∩ ϕ−1
2 (X2). A similar

result holds also for two linear Poisson transversals in a linear symplectic dual pair (3.97).
The differential geometric concept of Poisson transversal was linked to symplectic dual

pairs in [27]. The counterpart for Jacobi transversals and contact dual pairs in a differential
geometric setting will be the subject of a future work.

The present chapter is organized as follows. Initially, we give a linear (algebraic) setting
for Jacobi structures (Jacobi vector spaces) that comes from the pointwise perspective of a
Jacobi pair. This is shown to be a specific instance of a more general one (L-Jacobi vector
space) displayed by the same ‘surgery’ but in a Jacobi (line) bundle. In the remaining
part of the chapter, we focus only on the Jacobi vector spaces and their relations with
contact/locally conformal symplectic/Poisson structures. Then, we introduce and analyze
the concept of linear contact pair. Concretely, starting with the orthogonality in contact
vector spaces, we define the linear contact pair in a ‘standard’ manner via the contact
orthogonality of the kernels corresponding to the ‘legs’. We show that its symplectization
is a linear (symplectic) dual pair. Also, it is shown that linear contact pairs enjoy nice
characteristic subspace correspondences and Jacobi transversal correspondences.

The original contribution contained in this chapter is based on [14, 15].

2.1 A linear algebraic setting for Jacobi structures

In this section we put contact and Jacobi structures in a linear algebraic setting. In view
of this, let’s remember what a smooth Jacobi structure means (for more details see Chapter
4, Section 4.2). Initially defined by means of Jacobi pairs [33], Jacobi manifolds can also be
defined on non-trivial line bundles [32, 56]. Let M be a smooth manifold and L → M be
a line bundle. A Jacobi structure on the given line bundle is an R-Lie algebra structure on
the module of smooth sections Γ(L),

{·, ·} : Γ(L)× Γ(L)→ Γ(L),

which, in addition, is a first-order differential operator in each entry [56], i.e.

{λ, fµ} = Xλ(f)µ+ f{λ, µ}, λ, µ ∈ Γ(L), f ∈ F(M).

Previously, Xλ is the Hamiltonian vector field on M , which is completely determined by
{·, ·} and λ. The bracket {·, ·}, called the Jacobi bracket, can be equivalently encoded in a
vector bundle map

Ĵ : ∧2J1L→ L
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satisfying an appropriate integrability condition, where J1L denotes the first jet bundle of
L. The manifold M equipped with a Jacobi structure (L → M, {·, ·}) is called a Jacobi
manifold. An ‘exact surgery’ in a Jacobi manifold at one single point x ∈M reveals:

C1) a 1-dimensional vector space Lx;

C2) a short exact sequence of vector spaces 0→ R→ DxL→ TxM → 0;

C3) an Lx-valued 2-form ω̂x : Λ2DxL→ Lx.

When L = RM is the trivial line bundle over M , the definition of a Jacobi bracket boils
down to a pair (Π, E) (in this trivial line bundle context Ĵ reduces to Ĵ = Π−E∧1) consisting
of a bivector field Π and a vector field E satisfying appropriate integrability conditions. In
this trivial line bundle context, an ‘exact surgery’ in a Jacobi manifold displays the bivector
Πx ∈ ∧2TxM and the vector Ex ∈ TxM .

A definition that captures the linear version of non-cooriented contact structures has
been given by Loose:

Definition 2.1.1. [52] A contact structure on a vector space V is given by a hyperplane
H ⊂ V endowed with a skew-symmetric non-degenerate bilinear form ωH : H ×H → V/H.

In the light of the previous pointwise ‘surgery’ in a Jacobi line bundle, we can exhibit
[15] the notion of L-Jacobi structure as follows. Let L be a line (i.e. a 1-dimensional real
vector space) and V be a short exact sequence of real vector spaces

0 // R i // V̂
σ // V // 0. (2.3)

The pair (L,V) will be called an L-vector space. By considering the dual of (2.3)

0 // V ∗ σ∗ // V̂ ∗ i∗ // R // 0, (2.4)

followed the tensor product with the line L, it results the short exact sequence

0 // V ∗ ⊗ L // V̂ ∗ ⊗ L // L // 0, (2.5)

which allows the introduction of the L-Jacobi vector space concept.

Definition 2.1.2. [15] An L-Jacobi structure on an L-vector space (L,V) is an L-valued
2-form

π̃ : ∧2Ṽ → L, (2.6)

where we used the notation
Ṽ := V̂ ∗ ⊗ L. (2.7)

If in addition the 2-form (2.6) is non-degenerate, we talk about an L-contact structure.

We show that the L-Jacobi structure encompasses the contact one because L-contact
structures (i.e., non-degenerate L-Jacobi structures) are nothing but the contact ones. In-
deed, if π̃ is a non-degenerate L-Jacobi structure on an L-vector space (L,V), i.e. the linear
map

π̃] : Ṽ → Ṽ ∗ ⊗ l, π̃](α)(β) := π̃(α ∧ β) (2.8)
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is non-degenerate, we can define its inverse, π̃[. Further, the isomorphism Ṽ ∗ ⊗ L = V̂
exhibits the L-valued 2-form

ω̃ : ∧2V̂ → L, ω̃(x ∧ y) := π̃(π̃[(x) ∧ π̃[(y)), (2.9)

which is non-degenerate as ω̃[ = π̃[. If we denote by I := i(1), then, via the exact sequence
(2.5) it results that ω̃ determines both to a nontrivial L-valued 1-form on V , θ ∈ V ∗ ⊗ L

θ ◦ σ = ω̃[(I) (2.10)

and to an L-valued 2-form on H := Ker θ

ω̄H : ∧2H → L, ω̄H(σ(X) ∧ σ(Y )) := ω̃(X ∧ Y ), (2.11)

which is non-degenerate.

With these specifications at hand, by means of the universality of quotient space V/H,
the original line L is isomorphic to the quotient space, i.e. there exists the unique linear
map θ̄ that makes commutative the diagram

V

θ

��

p // V
H

θ̄
��
l

This isomorphism allows the identification of contact structure

ωH := θ̄−1 ◦ ω̄H . (2.12)

To conclude with, we have shown that contact structures are encompassed by L-Jacobi
structures. The previous construction stresses that the correspondence between L-contact
and contact is onto, but not one-to-one.

2.1.1 Linear contact structures

A cooriented contact structure on a (2m + 1)-dimensional differentiable manifold can be
defined as a hyperplane field given by the kernel of a differential 1-form θ that satisfies one
of the following two equivalent conditions:

1. the top degree form θ ∧ (dθ)m 6= 0,

2. dθ is non-degenerate on Ker θ.

The first condition can be transferred to the linear setting as follows:

Definition 2.1.3. A contact structure on a vector space V with dimV = 2m + 1 is a pair
(θ, ω) with θ ∈ V ∗ and ω ∈ Λ2V ∗, such that θ ∧ ωm 6= 0.
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The contact hyperplane H and cocontact line L, given by

H := Ker θ, L := Kerω[, (2.13)

satisfy V = H ⊕ L. There exists a unique Reeb vector E ∈ V that satisfies

iEθ = 1, iEω = 0, (2.14)

thus L = 〈E〉. The restriction of ω to the hyperplane H is a non-degenerate 2-form ωH ∈
Λ2H∗, called the curvature form (it plays the role of dθ|Ker θ from the coorientable smooth
situation).

The second condition yields an equivalent definition of a contact structure in the linear
setting:

Definition 2.1.4. A contact structure on a vector space V is a pair (ωH , E) consisting of a
non-degenerate form ωH ∈ Λ2H∗ on a hyperplane H ⊂ V and a vector E ∈ V \H.

This definition is the cooriented version of the more general Definition 2.1.1 due to Loose.
The choice of a nonzero vector E ∈ V \ H permits the identification of the cocontact line
L = V/H with the line generated by E, and the curvature form becomes a non-degenerate
skew-symmetric bilinear form ωH ∈ Λ2H∗, as in Definition 2.1.4.

Proposition 2.1.5. The two definitions 2.1.3 and 2.1.4 are equivalent.

Proof. We have seen how to pass from Definition 2.1.3 to Definition 2.1.4. For the way back,
we assign to every (ωH , E) as in Definition 2.1.4 a pair (θ, ω) as in Definition 2.1.3. These
are the unique θ ∈ V ∗ subject to the conditions

H = Ker θ, θ(E) = 1, (2.15)

and the 2-form ω ∈ Λ2V ∗ defined by

ω := p∗HωH ∈ Λ2V ∗, (2.16)

where pH denotes the projection on H parallel to the Reeb vector E:

pH : V → H, pH(x) := x− θ(x)E. (2.17)

Noticing that rankω = 2m, we deduce that θ ∧ ωm 6= 0, by using Lepage’s Theorem [51,
Proposition 2.5], which is the condition in Definition 2.1.3. Moreover, ω|H = ωH and iEω = 0
ensures that from (θ, ω) we regain the structure (ωH , E) we started with.

Remark 2.1.6 (Symplectization of contact structures). To any contact structure (θ, ω) on
the vector space V we associate the non-degenerate 2-form2

ω̂ ∈ Λ2 (V ⊕ R)∗ , ω̂ := ω + θ ∧ 1, (2.18)

2In reference [15], we considered an additional factor in definition (2.18), i.e. ω̂ := ω − θ ∧ 1.
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called the symplectization of the linear contact structure. Previous definition is consistent in
the light of isomorphism

∧p(V ⊕ R)∗ = ∧pV ∗ ⊕ ∧p−1V ∗, 1 ≤ p ≤ dimV.

exhibited by a natural pairing (see below (2.20)).
For any x⊕ t ∈ V ⊕ R we have that

ix⊕tω̂ = (ixω − tθ)⊕ θ(x) ∈ V ∗ ⊕ R, (2.19)

so x⊕ t lies in Ker ω̂ if and only if ixω = tθ and θ(x) = 0. The first identity contracted with
E implies that t = 0. Thus ixω = 0, and together with ixθ = 0 we get that ix(θ ∧ ωm) = 0,
hence x = 0 too. We conclude that the form ω̂ is non-degenerate, hence symplectic.

Alternatively, we see that ω̂m+1 = θ∧ωm∧1 6= 0 on the 2m+2 dimensional space V ⊕R.

2.1.2 Jacobi vector spaces and their Poissonizations

A linear Poisson structure on a vector space V is a bi-vector π ∈ ∧2V [51]. Linear symplectic
structures ω ∈ Λ2V ∗ admit canonical linear Poisson structures, given by π] = (ω[)−1 : V ∗ →
V , where π](η) = iηπ for all η ∈ V ∗ and ω[(x) := −ixω for all x ∈ V [55].

Definition 2.1.7. A linear Jacobi structure on a vector space V is a pair (π,E) with

π ∈ Λ2V, E ∈ V.

At this point, it is natural to ask about the relation between the L-Jacobi and Jacobi
concepts. If in Definition 2.1.2 we consider the L-vector space (R,V), with V admitting
a split (say j : V → V̂ ), then there exists the isomorphism V̂ = V ⊕ R and the L-Jacobi
structure becomes π̃ ∈ ∧2(V ⊕ R). On the other hand, by considering the pairing

〈•, •〉 : (V ⊕ R)× (V ∗ ⊕ R)→ R, 〈x⊕ t, α⊕ s〉 := α(x) + st, (2.20)

we can identify (V ⊕ R)∗ = V ∗ ⊕ R which results in the isomorphisms

∧p(V ⊕ R) = ∧pV ⊕ ∧p−1V, 1 ≤ p ≤ dimV.

The last result allows the identification π̃ = π⊕E which makes transparent the linear Jacobi
structure (π,E).

In the next chapters we shall sketch a similar connection between Jacobi(-like) line bun-
dles and Jacobi(-like) pairs.

Example 2.1.8. By its very definition, it is clear that a Poisson vector space is a Jacobi
one exhibiting a trivial Reeb vector E.

Example 2.1.9. A linear algebraic version of a locally conformally symplectic structure,
called a linear lcs structure on a vector space V is a pair (ω, λ) consisting of a non-degenerate
skew-symmetric 2-form ω ∈ Λ2V ∗ and a 1-form λ ∈ V ∗, called the Lee form. It has a natural
underlying Jacobi structure given by π] = (ω[)−1 and E = π]λ. In particular V = Imπ] is
even dimensional.



20 CHAPTER 2. LINEAR (ALGEBRAIC) JACOBI STRUCTURES AND DUAL PAIRS

Example 2.1.10. Every contact structure (ωH , E) on a given vector space V generates a
Jacobi structure (π,E) on V . The bi-vector is defined by

π] : V ∗ → V, π] := ιH(ω[H)−1ι∗H , (2.21)

where ιH : H → V denotes the inclusion. The relation (2.21) can be rewritten as

π(β, γ) = ωH(π]β, π]γ), ∀β, γ ∈ V ∗. (2.22)

Because Im ι∗H = H∗ and Im π] = H, we have that V = H ⊕ 〈E〉 = Imπ] ⊕ 〈E〉.

Definition 2.1.11. A subspace W of a contact vector space (V, ωH , E) is called a contact
subspace if W is transverse to H and ωH |H∩W is non-degenerate. A subspace W of an lcs
vector space (V, ω, λ) is called a lcs subspace if ω|W is non-degenerate.

The subspace W inherits in a natural way a contact/lcs structure with induced Jacobi
structure (πW , EW ). Indeed, denoting by

W ◦ := {α ∈ V ∗ : W ⊆ Kerα},

the annihilator associated with the subspace W ⊆ V , the invoked structure is constructed
with the help of the projection pW on the first factor in the direct sum decomposition

V = W ⊕ π]W ◦, (2.23)

namely EW = pW (E) and πW = (Λ2pW )(π) (see also Corollary 2.3.12).
The decomposition (2.23) is clear in the lcs case, since W ω = π]W ◦, the orthogonal of

W with respect to the non-degenerate 2-form ω. For the contact case it follows from the
following:

Lemma 2.1.12. In a contact vector space (V, ωH , E), any subspace U transverse to H
satisfies

(H ∩W )ωH = π](W ◦). (2.24)

Proof. By means of the equality (H ∩W )ωH = ω]H((H ∩W )◦), combined with the definition
π] = ω]Hι

∗
H of the Jacobi bi-vector associated with a given contact structure, the identity

(2.24) is equivalent to
(H ∩W )◦ = ι∗H (W ◦) ,

where the annihilator lies inside H∗. The inclusion ι∗H (W ◦) ⊆ (W ∩H)◦ is immediate. It is
an equality by a dimension count. From the transversality H+W = V follows that θ /∈ W ◦.
Since Ker i∗H = 〈θ〉, we get dim i∗H(W ◦) = dimW ◦ = dimV−dimW = dimH−dim(H∩W ) =
dim(H ∩W )◦.

In the contact case, the curvature form is the restriction of ωH to the contact hyperplane
HW = H∩W . In the lcs case, both the non-degenerate 2-form and the Lee form are obtained
by restriction: ωW = ω|W and λW = λ|W .

Next we present the linear version of the one-to-one correspondence between Jacobi
structures and homogeneous Poisson structures over smooth manifolds [56, 76].
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Definition 2.1.13. Let (V, π, E) be a Jacobi vector space. Then the vector space V ⊕ R
can be canonically endowed with a Poisson structure3

π̂ := π + E ∧ 1, (2.25)

called the Poissonization of the Jacobi structure.

Remark 2.1.14. At this point, it is noteworthy that the Poisson structure on the Poisson
vector space (V ⊕ R, π̂), π̂, is just an L-Jacobi structure on the L-vector space (R,V)

0 // R i2 // V ⊕ R p1 // V // 0.

Proposition 2.1.15. The symplectization (2.18) of a contact structure leads to the same
result as the Poissonization (2.25) of its underlying Jacobi structure offered by Example
2.1.10.

Proof. We have to show that the bi-vector π̂ := π + E ∧ 1 is the inverse of the 2-form
ω̂ = ω + θ ∧ 1. Similarly to (2.19) we get that

π̂](η ⊕ s) = (π](η)− sE)⊕ η(E), η ∈ V ∗, s ∈ R, (2.26)

and a direct computation yields for all x ∈ V and t ∈ R:

〈(η ⊕ s), π̂]ω̂[(x⊕ t)〉 = 〈(ixω − tθ)⊕ θ(x), (π](η)− sE)⊕ η(E)〉
= −sω(x,E)− tθ(π]η) + ω(x, π]η) + st+ η(E)θ(x)

= η(x) + st = 〈η ⊕ s, x⊕ t〉.

At step three we used iEω = 0 and Im π] = H = Ker θ, together with the identity

ω(x, π]η) = ωH(pH(x), π]η) = η(pH(x)) = η(x)− η(E)θ(x).

We conclude that π̂]ω̂[ = 1V⊕R, thus the bi-vector π̂ is the inverse of the 2-form ω̂.

2.1.3 Non-degenerate Jacobi structures

The non-degenerate Poisson structures are the symplectic ones. A natural way to introduce
the non-degenerate Jacobi structures is via Poissonization: (π,E) is non-degenerate Jacobi
if and only if π̂ = π + E ∧ 1 is non-degenerate Poisson.

Lemma 2.1.16. The Poisson structure π̂ on V ⊕ R is non-degenerate if and only if

V = Imπ] ⊕ 〈E〉. (2.27)

Proof. We analyze the injectivity of π̂], given in (2.26), and we get that the Poisson structure
π̂ is non-degenerate if and only if

E /∈ Im π] and E◦ ∩Ker π] = 0. (2.28)

The annihilator of the second formula in (2.28) gives 〈E〉+ Im π] = V , hence the conclusion.

3In [15] an extra-sign has been considered, i.e. π̂ := π − E ∧ 1



22 CHAPTER 2. LINEAR (ALGEBRAIC) JACOBI STRUCTURES AND DUAL PAIRS

Definition 2.1.17. The Jacobi structure (π,E) on V is called non-degenerate if it satisfies
the identity (2.27).

Due to the fact that the range of π] is even-dimensional, it is clear from (2.27) that
non-degenerate Jacobi vector spaces are odd-dimensional. The Example 2.1.10 ensures that
the contact structures are non-degenerate Jacobi structures. The converse also holds.

Proposition 2.1.18. If (π,E) is a non-degenerate Jacobi structure on V , then there exists
a unique contact structure on V with induced Jacobi structure (π,E).

Proof. Starting with a Jacobi structure (π,E) that enjoys (2.27), we define a contact struc-
ture (ωH , E) with hyperplane H := Imπ] and 2-form

ωH(π]β, π]γ) = π(β, γ), ∀β, γ ∈ V ∗. (2.29)

This means that ωH(x, π]γ) = γ(x) for all x ∈ H, so ωH is well-defined by Kerπ] = H◦. It
is non-degenerate since KerωH = π](H◦) = 0. We conclude that (ωH , E) is indeed a contact
structure on V . The identity (2.22) ensures that the underlying Jacobi structure is the given
Jacobi structure (π,E).

2.1.4 Characteristic subspaces and transitivity

For a Poisson vector space (V, π), the Hamiltonian vectors Xα = π]α are associated to
covectors α ∈ V ∗. They generate the even dimensional characteristic subspace C = Imπ],
which inherits a non-degenerate Poisson structure πC ∈ Λ2C, hence a symplectic structure
ωC ∈ Λ2C∗ [51, Proposition 4.6]:

ωC(π]β, π]γ) = π(β, γ), ∀β, γ ∈ V ∗. (2.30)

Let (π,E) be a Jacobi structure on the vector space V . To each pair A = (α, a) ∈ V ∗×R
we assign a Hamiltonian vector

XA := aE + π]α. (2.31)

To establish the analogy with Hamiltonian vector fields Xf on Jacobi manifolds, the number
a stands for the value of the Hamiltonian function f , while the covector α stands for its
differential df . Remember here that, according with the preamble of this section, a Jacobi
structure on the trivial line bundle RM stands in a bi-differential operator Ĵ = Π − E ∧ 1,
Ĵ : ∧2J1RM → RM . Due to the vector bundle isomorphism J1RM = T ∗M ⊕ RM , the
Hamiltonian vector field associated with a smooth function f ∈ F(M) (via its prolongation
to the first-order jet bundle j1f = df ⊕ f) is consistently defined by

(pr1 ◦ Ĵ ])(df ⊕ f) = Π]df + fE.

Previously, we denoted by pr1 the projection on the first factor pr1 : TM ⊕ RM → TM ,
which is a vector bundle map.

Remark 2.1.19. At this stage, it is useful to express the Hamiltonian vectors associated
with a given contact structure (θ, ω) on V . Similarly to the differential geometric setting,
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for each pair A = (α, a) ∈ V ∗×R we define the contact Hamiltonian vector XA ∈ V subject
to the conditions

iXAθ = a, iXAω = −α + α(E)θ. (2.32)

Since θ ∧ ωm 6= 0, the two conditions single out a unique vector.
It coincides with the Hamiltonian vector (2.31) for the associated linear Jacobi structure.

The first condition in (2.32) is satisfied because iEθ = 1 and Im π] = Ker θ. For the second
condition we compute

−iXAω
(2.14)
= ω[π]α

(2.21)
= ω[ιH(ω[H)−1ι∗Hα

(2.16)
= p∗Hω

[
HpHιH(ω[H)−1ι∗Hα = p∗Hι

∗
Hα

(2.17)
= α−α(E)θ.

Definition 2.1.20. The Hamiltonian vectors of a Jacobi vector space generate the subspace

C = Imπ] + 〈E〉, (2.33)

called the characteristic subspace.

The characteristic subspace C inherits a Jacobi structure (πC , E) in a canonical way. The
bi-vector πC ∈ Λ2C is given by

πC (ι∗Cβ, ι
∗
Cγ) = π (β, γ) , ∀β, γ ∈ V ∗, (2.34)

where the surjective map ι∗C : V ∗ → C∗ is associated with the inclusion ιC : C → V . The
inclusion Ker ι∗C = C◦ ⊆ (Im π])◦ guarantees that the bi-vector πC is well-defined.

By the same formula (2.30) as in the Poisson case, we define a non-degenerate 2-form ωC
on Im π]. Now we can give the linear analogue of the characteristic leaf theorem:

Proposition 2.1.21. 1. If E ∈ Im π], then the characteristic subspace C = Imπ] is even
dimensional and the induced Jacobi structure (πC , E) is an lcs structure (ωC , λC), with
Lee form λC = −iEωC.

2. If E /∈ Imπ], then the characteristic subspace C = Im π] ⊕ 〈E〉 is odd dimensional
and the induced Jacobi structure (πC , E) is a contact structure with contact hyperplane
H = Imπ] and curvature form ωH = ωC.

Definition 2.1.22. The Jacobi structure (π,E) on V is said to be transitive if the charac-
teristic subspace C is the whole V , i.e.

V = Imπ] + 〈E〉. (2.35)

By Proposition 2.1.21, the transitive Jacobi structures fall into one of the following two
categories.

1. If E /∈ Im π], then V = Im π] ⊕ 〈E〉 is odd dimensional with non-degenerate Jacobi
structure. Proposition 2.1.18 ensures that the Jacobi structure comes from a contact
structure on V .

2. If E ∈ Im π], then V = Imπ] is even dimensional and π] : V ∗ → V is an isomorphism.
Thus the Jacobi structure comes from an lcs structure (ω, λ) on V , where the non-
degenerate 2-form ω is the inverse of π and the Lee form is λ = ω[E (see Example
4.2.3).
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2.1.5 Conformal equivalence of Jacobi structures

The concept of conformally equivalent Jacobi structures on manifolds [56, 76] can also be
adapted to our linear framework.

Definition 2.1.23. Let V be a vector space, (π,E) a Jacobi structure on it, and A :=
(α, a) ∈ V ∗ × R×. The Jacobi structure given by

π(A) := aπ, E(A) := aE + π]α (2.36)

is said to be A-conformally equivalent to (π,E).

We notice that E(A) = XA the Hamiltonian vector on the Jacobi vector space V . The
conformal equivalence preserves the transitivity property, as well as the non-degeneracy
property of linear Jacobi structures. It also maintains the dimension, hence the type of
characteristic subspace.

Remark 2.1.24. Combining the above definition with (2.25) we conclude that, if the Jacobi
structures (π,E) and

(
π(A), E(A)

)
are conformally-related, then their Poissonizations (on

V ⊕ R) satisfy
π̂(A) = aπ̂ + π]α ∧ 1, (2.37)

so the Poissonizations are conformally related if and only if α ∈ Ker π].

Below we express the conformal equivalence for contact and lcs structures. First we ex-
amine two linear contact structures of two conformally equivalent transitive Jacobi structures
(π,E) and (π(A), E(A)) on an odd dimensional vector space V . They have the same contact

hyperplane H = Imπ], since π(A)] = aπ] with a 6= 0. It follows that the contact forms differ
by a constant factor. We must have θ(A) = a−1θ because iE(A)θ = aiEθ + iπ]αθ = a. The
curvature form is obtained with the formula (2.29):

a2ω
(A)
H (π]β, π]γ) = ω

(A)
H ((π(A))]β, (π(A))]γ) = π(A)(β, γ) = aπ(β, γ) = aωH(π]β, π]γ)

for all β, γ ∈ V ∗, hence ω
(A)
H = a−1ωH .

Definition 2.1.25. The contact structure (ω
(A)
H , E(A)) with

ω
(A)
H := a−1ωH , E(A) := aE + ω]Hι

∗
Hα (2.38)

is called A-conformally equivalent to the contact structure (ωH , E).

The description of conformal equivalence in terms of (θ, ω) is: θ(A) = a−1θ and ω(A) =
a−1ω − a−2α ∧ θ. (It is the formula expected from formally differentiating θ(A) = a−1θ.)

Next we describe the relation between the linear lcs structures of two conformally equiva-
lent transitive Jacobi structures (π,E) and (π(A), E(A)) on an even dimensional vector space
V . It is clear that the non-degenerate 2-forms ω and ω(A), inverses of the isomorphisms π]

and (π(A))
]

= aπ], are related by ω(A) = a−1ω. Now we can see that the Lee 1-forms are
related by

λ(A) = (ω(A))
[
E(A) = a−1ω[(aE + π]α) = ω[E + a−1α = λ+ a−1α.

(Here a−1α plays the role of the logarithmic derivative of a.)
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Definition 2.1.26. The linear lcs structure (ω(A), λ(A)) with

ω(A) = a−1ω, λ(A) = λ+ a−1α

is called A-conformally equivalent to the lcs structure (ω, λ).

2.1.6 Morphisms of Jacobi vector spaces

In this section we are going to complete the category of Jacobi vector spaces with morphisms
of Jacobi vector spaces. We start from the concept of morphism of Poisson vector spaces
[51]. Recall that a morphism between two Poisson vector spaces (V, π) and (V ′, π′) is a linear
map ϕ : V → V ′ such that (Λ2ϕ)π = π′, i.e. π′ (β′, γ′) = π (ϕ∗β′, ϕ∗γ′), with ϕ∗ : V ′∗ → V ∗

denoting the dual of ϕ. An equivalent way to express this is (π′)] = ϕπ]ϕ∗.

Definition 2.1.27. Let (V, π, E) and (V ′, π′, E ′) be two Jacobi vector spaces. The linear
map ϕ : V → V ′ is said to be a Jacobi map if

(Λ2ϕ)π = π′, ϕE = E ′. (2.39)

The connection between Jacobi structures on V and Poisson structures on V ⊕ R via
Poissonization (2.25) can be used to characterize the Jacobi morphisms in terms of Poisson
morphisms. A special case of Proposition 2.1.29 ensures that the linear map ϕ : V → V ′ is
a Jacobi morphism if and only if the linear map

ϕ̂ : V ⊕ R→ V ′ ⊕ R, ϕ̂ (x⊕ t) := ϕ(x)⊕ t

is a Poisson morphism between the Poissonizations (V ⊕ R, π̂) and (V ′ ⊕ R, π̂′).

Definition 2.1.28. Let (V, π, E) and (V ′, π′, E ′) be two Jacobi vector spaces. A linear
map ϕ : V → V ′ is said to be a conformal Jacobi map with conformal factor A := (α, a) ∈
V ∗×R×, also called an A-conformal Jacobi map, if it is a Jacobi morphism for the conformally
equivalent Jacobi structure

(
π(A), E(A)

)
on V . This can be expressed as

aϕπ]ϕ∗ = (π′)
]
, ϕ

(
aE + π]α

)
= E ′. (2.40)

The Jacobi maps are the conformal Jacobi maps with conformal factor A = (0, 1).

At this stage a natural problem, inspired by the differential geometric setting, arises: to
associate to a given A-conformal Jacobi map ϕ : V → V ′, an appropriate Poisson map ϕ̂(A)

from (V ⊕ R, π̂) to (V ′ ⊕ R, π̂′), i.e. to alter the map, not the Jacobi structure. The answer
is somehow surprising:

Proposition 2.1.29. Let (V, π, E) and (V ′, π′, E ′) be two Jacobi vector spaces. The map
ϕ : V → V ′ is an A-conformal Jacobi map with A = (α, a), a > 0, if and only if the map

ϕ̂(A) : V ⊕ R→ V ′ ⊕ R, ϕ̂(A) (x⊕ t) :=
√
aϕ (x)⊕

(
t− a−1α(x)

)
(2.41)

is a Poisson map from (V ⊕ R, π̂) to (V ′ ⊕ R, π̂′).
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Proof. The dual of ϕ̂(A) given in (2.41) reads(
ϕ̂(A)

)∗
(η′ ⊕ s′) =

√
a
(
ϕ∗η′ − a−1s′α

)
⊕ s′, (2.42)

for η′ ⊕ s′ ∈ (V ′)∗ ⊕ R. Now using (2.25), (2.40), and (2.42), a direct computation gives

π̂
((
ϕ̂(A)

)∗
(η′1 ⊕ s′1) ,

(
ϕ̂(A)

)∗
(η′2 ⊕ s′2)

)
= π̂′ (η′1 ⊕ s′1, η′2 ⊕ s′2) ,

which shows that the morphism (2.41) is a Poisson map between the Poisson vector spaces
(V ⊕ R, π̂) and (V ′ ⊕ R, π̂′).

Conversely, if the map ϕ̂(A) defined in (2.41) is Poisson, i.e. π̂′
]

= ϕ̂(A)π̂]
(
ϕ̂(A)

)∗
, then

because of

ϕ̂(A)π̂]
(
ϕ̂(A)

)∗
(η ⊕ s) =

(
aϕπ]ϕ∗(η)− sϕ(aE + π]α)

)
⊕ η

(
ϕ(aE + π]α)

)
,

the original map, ϕ : V → V ′, is an A-conformal Jacobi one.

Remark 2.1.30. The unusual square root factor
√
a in the previous proposition can be

avoided via an adapted (to conformal) pairing on the codomain V ′ ⊕ R. Precisely, if one
considers the pairing

〈•, •〉 : (V ′ ⊕ R)× (V ′∗ ⊕ R)→ R, 〈x′ ⊕ t′, α′ ⊕ s′〉 := a(α′(x′) + s′t′), (2.43)

then the linear map ϕ is conformal if and only if

ϕ̃(A) : V ⊕ R→ V ′ ⊕ R, ϕ̃(A) (x⊕ t) := ϕ (x)⊕
(
t− a−1α(x)

)
(2.44)

is Poisson with respect to π̂ and π̂′ respectively.
Indeed, if we denote by (ϕ̃(A))† the dual of linear map (2.44) with respect to the pairings

(2.20) and (2.43), it results that

(ϕ̃(A))†(η′ ⊕ t′) = (aϕ∗(η′)− t′α)⊕ (at′).

By direct computation based on this dual, one further gets

ϕ̃(A)π̂](ϕ̃(A))†(η′ ⊕ s′) =
(
aϕπ]ϕ∗(η′)− s′ϕ(aE + π]α)

)
⊕ η′(ϕ(aE + π]α)),

which proves the claim.

It is noteworthy that the uncommon factor
√
a is naturally ‘renormalized’ in the broadest

context of L-Jacobi vector spaces [15]. These are the objects of a category, LJVS, with the
morphisms L-Jacobi maps. This category is a subcategory in the L-vector spaces category
LVS with the morphisms L-maps Let (L,V) and (L′,V′) be two L-vector spaces. An L-map
is a pair (f,Φ) consisting of a line isomorphism f : L → L′ and a short exact sequence
morphism Φ, i.e., the pair of linear maps Φ := (ϕ̃, ϕ) that makes the diagram

0 // R //

1

��

V̂ //

ϕ̃

��

V //

ϕ

��

0

0 // R // V̂ ′ // V ′ // 0
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commutative. When the the L-vector spaces are trivial (see Remark 2.1.14) then the line
isomorphism reduces to the multiplication with a non-vanishing constant, f(1) = a, a ∈ R×,
while the liner map ϕ̃ in the short exact sequence morphism reads

ϕ̃(x⊕ t) = ϕ(x)⊕ (β(x) + t)

with β ∈ V ∗.
In order to ‘isolate’ the mentioned subcategory, we invoke the natural L-pairing in L-

vector spaces that results from (2.7)

〈·, ·〉 : Ṽ × V̂ → L, 〈α⊗ l, x〉 := α(x)l,

and introduce the L-adjoint map associated with the L-map (f,Φ), (f,Φ)† : Ṽ ′ → Ṽ , defined
by 〈

(f,Φ)†ψ′, δ
〉

= f−1
〈
ψ,Φ(δ)

〉
.

With these preparations at hand, we are able to introduce the L-Jacobi maps. Let
(J, L,V) and (J ′, L′,V′) be two L-Jacobi vector spaces and (f,Φ) be an L-map. This is said
to be an L-Jacobi map if and only if

J ′] = ϕ̃ ◦ J ] ◦ (f,Φ)†,

where
J ] : Ṽ → Ṽ ∗ ⊗ L = V̂ , J ′] : Ṽ ′ → Ṽ ′∗ ⊗ L′ = V̂ ′.

Within this setting, the A-conformal Jacobi map (see Definition 2.1.28) is nothing but a
L-Jacobi map (f,Φ) with f(1) = a and

0 // R //

1

��

V ⊕ R //

ϕ̃
��

V //

ϕ

��

0

0 // R // V ′ ⊕ R // V ′ // 0

,

where ϕ̃ is introduced in (2.44).

2.1.7 Coisotropic subspaces

Coisotropic submanifolds in the Jacobi setting have been studied for instance in [38, 44].
Their main use is in performing Jacobi reduction [61, 57]. In this section we adapt this
concept to our linear framework.

Definition 2.1.31. A linear subspace W of a Jacobi space (V, π, E) is called coisotropic if

π]W ◦ ⊆ W and E ∈ W.

The definition is compatible with Poisson coisotropy: a linear subspace W of a Poisson
vector space (V, π) is called coisotropic if π]W ◦ ⊆ W . It also yields the expected definition
of a coisotropic subspace of a symplectic vector space (V, ω), namely W ω ⊆ W , since π]W ◦

coincides with the symplectic orthogonal W ω.
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A coisotropic subspace of a contact space (V, ωH , E) is, by definition (see [74] for the
differential geometric setting), a subspace W that is transversal to H and satisfies the identity

(H ∩W )ωH ⊆ H ∩W. (2.45)

Since π]W ◦ = (H∩W )ωH , the Definition 2.1.31 yields in the contact case a special coisotropic
subspace W , namely one that satisfies E ∈ W (which implies that W is transversal to H).

Coisotropic subspaces are the right setting for Jacobi reduction. Given a coisotropic
subspace W of a Jacobi vector space (V, π, E), on the quotient space

W̃ = W/π]W ◦

one defines a linear Jacobi structure (π̃, Ẽ), called the reduced Jacobi structure. Here

Ẽ := E + π]W ◦

and, noticing that its dual is canonically identified with

W̃ ∗ ' (π]W ◦)◦/W ◦, (2.46)

one defines the bi-vector

π̃(β +W ◦, γ +W ◦) := π(β, γ), ∀β, γ ∈ (π]W ◦)◦. (2.47)

In the symplectic case we obtain the reduced structure on W̃ = W/W ω that comes from
the symplectic form ω, namely

ω̃(u+W ω, v +W ω) = ω(u, v), ∀u, v ∈ W. (2.48)

Indeed, we notice that the 1-forms β = iuω and γ = ivω belong to (W ω)◦ = (π]W ◦)◦, hence
their classes β +W ◦ = iu+Wω ω̃ and γ +W ◦ = iv+Wω ω̃ in W̃ ∗ (see (2.46)) satisfy

π̃(β +W ◦, γ +W ◦)
(2.47)
= π(β, γ) = ω(u, v) = ω̃(u+W ω, v +W ω).

Thus the reduced symplectic form ω̃ has the induced Poisson bi-vector π̃.

Proposition 2.1.32. If the Jacobi structure on V is non-degenerate, i.e. it comes from
a contact structure (ωH , E), and the subspace W is coisotropic, then the reduced Jacobi
structure (π̃, Ẽ) on W̃ is non-degenerate too. Moreover, it comes from the contact structure
(ωH̃ , Ẽ) with contact hyperplane H̃ = (H ∩W )/π]W ◦ and curvature 2-form

ωH̃(π]β + π]W ◦, π]γ + π]W ◦) = ωH(π]β, π]γ), (2.49)

for all π]β, π]γ ∈ H ∩W .

Proof. Because H = Imπ], we have the identity H∩W = π]((π]W ◦)◦), thus β, γ ∈ (π]W ◦)◦.
From (2.47) we get

π̃](β +W ◦) = π]β + π]W ◦, ∀β ∈ (π]W ◦)◦.

Now the relation (2.22) between the curvature 2-form ωH and the bi-vector π allows a similar
reasoning as in the symplectic setting above, which leads to the identity (2.49).
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The reduction in the lcs setting has features of the symplectic reduction [34]. A coisotropic
subspace W of the lcs vector space (V, ω, λ) has to satisfy, by definition, W ω ⊆ W together
with one of the equivalent conditions E ∈ W and λ|Wω = 0 (because E = π]λ). The
lcs reduction (i.e. the Jacobi reduction applied to a coisotropic subspace of an lcs space)
yields an lcs space (W̃ , ω̃, λ̃). Thus, beside the reduced non-degenerate 2-form ω̃ on W̃
(defined in (2.48)), which is the inverse of π̃ (defined in (2.47)), we also get the Lee form
λ̃ := λ+W ◦ ∈ W̃ ∗, which corresponds to Ẽ = E + π]W ◦ via π̃.

The notion of coisotropic subspace is compatible with the Poissonization procedure: W ⊆
(V, π, E) is coisotropic if and only if W ⊕R ⊆ (V ⊕R, π̂) is coisotropic. A more general fact
(needed later) holds:

Lemma 2.1.33. Let v0 be a fixed vector in V . Then the subspace W of (V, π + v0 ∧ E,E)
is coisotropic if and only if the subspace

U = {(x+ tv0, t) : x ∈ W, t ∈ R}

of the Poissonization (V ⊕ R, π̂) is coisotropic.

Proof. The annihilator of U is

U◦ = {(η,−η(v0)) : η ∈ W ◦}.

We notice that π̂](η,−η(v0)) = (π]η+ η(v0)E, η(E)) = ((π+ v0 ∧E)]η+ η(E)v0, η(E)). The
required equivalence follows.

Let (Vi, πi), i = 1, 2 be two Poisson vector spaces. The product vector space V1×V2 comes
naturally equipped with a product Poisson structure π1 × π2. In the light of the canonical
identification V ∗1 × V ∗2 = (V1 × V2)∗, the product Poisson structure π1 × π2 satisfies

(π1 × π2)] : V ∗1 × V ∗2 → V1 × V2, (π1 × π2)](η1, η2) = (π]1η1, π
]
2η2). (2.50)

Lemma 2.1.34. Given two Jacobi vector spaces (Vi, πi, Ei), i = 1, 2, the vector space V1 ×
V2 × R, endowed with the Jacobi structure

π = π1 − π2 + E1 ∧ 1 + E2 ∧ 1 and E = E1, (2.51)

has the property that its Poissonization is isomorphic to the product π̂1× (−π̂2) of the Pois-
sonizations of (π1, E1) and −(π2, E2), through the linear map

ψ : (V1×V2×R)⊕R→ (V1⊕R)×(V2⊕R), ψ((x1, x2, τ)⊕t) = (x1⊕t, x2⊕(t−τ)). (2.52)

Proof. By means of definition (2.52) it results that

(π̂1 × (−π̂2))] (η1 ⊕ s1, η2 ⊕ s2) =
(

(π]1η1 − s1E1)⊕ η1(E1),−((π]2η2 − s2E2)⊕ η2(E2))
)

(2.53)

ψ∗ (η1 ⊕ s1, η2 ⊕ s2) = (η1, η2,−s2)⊕ (s1 + s2), (2.54)

π̂] ((η1, η2, τ)⊕ t) =
(
π]1η1 − (t+ τ)E1,−(π]2η2 + τE2), η1(E1) + η2(E2)

)
⊕ η1(E1). (2.55)

Putting together the results (2.53)–(2.55), the identity (π̂1 × (−π̂2))] = ψπ̂]ψ∗ follows.
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A linear map ϕ : (V1, π1) → (V2, π2) is Poisson if and only if its graph is a coisotropic
subspace of V1 × V2 endowed with the Poisson bi-vector π1 × (−π2). A similar result holds
for conformal Jacobi maps.

Proposition 2.1.35. Let ϕ : (V1, π1, E1) → (V2, π2, E2) be a linear map and A = (α, a) ∈
V ∗1 × R× a conformal factor with a > 0. Then ϕ is an A-conformal Jacobi map if and only
if

W := {(x,
√
aϕ(x),

1√
a
α(x)) : x ∈ V1}

is a coisotropic subspace of the vector space V1 × V2 × R with the product Jacobi structure
(π,E) = (π1 − π2 + E1 ∧ 1 + E2 ∧ 1, E1), introduced in (2.51).

Proof. We use Lemma 2.1.34, Proposition 2.1.29, and Lemma 2.1.33 applied to

U = ψ−1(Graph(ϕ̂(A))) = {((x,
√
aϕ(x), (1−

√
a)t+

1√
a
α(x)), t) : x ∈ V1, t ∈ R}

and to v0 = (0, 0, 1−
√
a) ∈ V1 × V2 × R.

It is noteworthy that, within the more generous category of L-Jacobi vector spaces [15],
we can reformulate the previous proposition such that the unpleasant factor

√
a no longer

appears.

Proposition 2.1.36. Let ϕ : (V1, π1, E1) → (V2, π2, E2) be a linear map and A = (α, a) ∈
V ∗1 × R× a conformal factor. Then ϕ is an A-conformal Jacobi map if and only if

W := {(x, ϕ(x), a−1α(x)) : x ∈ V1}

is a coisotropic subspace of the vector space V1 × V2 × R with the product Jacobi structure
(π,E) = (π1 − π2 + E1 ∧ 1 + E2 ∧ 1, E1) of (π1, E1) and −(π2, E2), introduced in (2.51).

2.2 Contact dual pairs in purely linear framework

The linear version of a symplectic dual pair consists of a pair of linear Poisson maps (3.97)
with symplectic orthogonal kernels [11]. In this section we study the linear version of a
contact dual pair, inspired by the Example 3.4 in [73] that describes contact dual pairs in
the trivial line bundle case.

2.2.1 Linear contact dual pairs

Definition 2.2.1. Let (V, ωH , E) be a contact vector space and (V1, π1, E1) and (V2, π2, E2)
be two Jacobi vector spaces. The pair of Jacobi maps ϕ1, ϕ2 with conformal factors A1 =
(α1, a1), A2 = (α2, a2),

(V, ωH , E)
ϕ1

ww

ϕ2

''
(V1, π1, E1) (V2, π2, E2),

(2.56)

forms a linear contact dual pair if the following three conditions are satisfied:
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1. XA1 ∈ Kerϕ2, XA2 ∈ Kerϕ1,

2. (H ∩Kerϕ1)ωH = H ∩Kerϕ2,

3. π(α1, α2) = α2(XA1)− α1(XA2),

with (π,E) representing the non-degenerate Jacobi structure on V associated with the con-
sidered contact structure (ωH , E) (see Example 2.1.10 and Proposition 2.1.18), and XA1 , XA2

denoting the Hamiltonian vectors in the contact vector space V . Since both XA1 and XA2

are transverse to the contact hyperplane H, the point 1 implies the transversality properties

H + Kerϕ1 = H + Kerϕ2 = V. (2.57)

The importance of point 3 will be revealed in the symplectization procedure from Section
2.2.3, where contact dual pairs are transformed into symplectic dual pairs, as well as in
the Section 2.2.4, where the characteristic subspace correspondence in contact dual pairs is
described.

The contact dual pair is called full if the conformal Jacobi maps ϕ1, ϕ2 are surjective. In
this case

dimV1 + dimV2 = dimV − 1. (2.58)

Indeed, from the transversality (2.57) and point 2 of the definition, we get that dim Kerϕ1 +
dim Kerϕ2 = dimV + 1. Together with dim Kerϕi = dimV − dimVi, a consequence of the
surjectivity of ϕi, this implies (2.58).

Proposition 2.2.2. In any linear contact dual pair (2.56), the following identities hold:

H ∩Kerϕ1 = π](Imϕ∗2), H ∩Kerϕ2 = π](Imϕ∗1), (2.59)

as well as a Howe [58] type property:

π(ϕ∗1η1, ϕ
∗
2η2) = 0, ∀η1 ∈ V ∗1 , η2 ∈ V ∗2 . (2.60)

Proof. The first two identities follow from the Lemma 2.1.12 applied to Kerϕi, i = 1, 2. For
the Howe type property we notice that π(ϕ∗1η1, ϕ

∗
2η2) = −η1(ϕ1π

]ϕ∗2η2), which vanishes by
(2.59).

Example 2.2.3. Every linear symplectic dual pair can be pulled back to a linear contact
dual pair as follows. We start with a symplectic dual pair

(W,ω)
ϕ1

yy

ϕ2

%%
(W1, π1) (W2, π2)

The symplectic vector space (W,ω) exhibits the hyperplane W ≤ W ⊕R, which is equipped
with non-degenerate 2-form ωW = ω. By taking the vector E = 1 ∈ W ⊕ R, we display the
contact vector space (W ⊕ R, ωW , E = 1) associated with the initial symplectic one (W,ω)
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The Poisson maps ϕi, for i = 1, 2 are Jacobi, and the projection p : W ⊕ R → W is Jacobi
too, thus ϕi ◦ p are Jacobi maps. We get the linear contact dual pair of Jacobi maps

(W ⊕ R, ω, E)
ϕ1◦p

ww

ϕ2◦p

''
(W1, π1) (W2, π2).

2.2.2 Contact orthogonality

Definition 2.2.4. Let U be a subspace of the contact vector space (V, ωH , E) which is trans-
verse to H, i.e. H + U = V . The contact orthogonal of U is defined by

U⊥ := (H ∩ U)ωH ⊕ 〈E〉. (2.61)

The analogous differential geometric notion appears in [50], where it is called pseudo-orthogonal.

Since dim(H ∩ U) = dimU − 1, we get that

dimU + dimU⊥ = dimV + 1. (2.62)

The relation (2.61) can also be written as U⊥ = π](U◦)⊕ 〈E〉, by Lemma 2.1.12.

Let ⊥A denote the orthogonal w.r.t. (ω
(A)
H , E(A)) = (a−1ωH , XA), the conformally equiv-

alent contact structure on V . This means that

U⊥A := (H ∩ U)ωH ⊕ 〈XA〉, (2.63)

because the ωH-orthogonality and the ω
(A)
H -orthogonality coincide.

Proposition 2.2.5. An equivalent set of conditions for the linear contact dual pair (2.56)
are

1. The transverse to H subspaces Kerϕ1 and Kerϕ2 satisfy (Kerϕ1)⊥A1 = Kerϕ2 and
(Kerϕ2)⊥A2 = Kerϕ1,

2. π (α1, α2) = α2(XA1)− α1(XA2).

Proof. The points 1 and 2 in the Definition 2.2.1 of a linear contact dual pair are equivalent
to the following two identities:

(Kerϕ1)⊥A1 = Kerϕ2, (Kerϕ2)⊥A2 = Kerϕ1. (2.64)

Indeed, (Kerϕ1)⊥A1 = (H ∩ Kerϕ1)ωH ⊕ 〈XA1〉 = (H ∩ Kerϕ2) ⊕ 〈XA1〉 = Kerϕ2, by
(2.63). For the reverse implication, we notice that H ∩ (Kerϕi)

⊥Ai = (H ∩ Kerϕi)
ωH and

the Hamiltonian vector XAi ∈ (Kerϕi)
⊥Ai .
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Example 2.2.6. The simplest method to get linear symplectic dual pairs is with a lin-
ear subspace W ⊆ V of the symplectic vector space (V, ω). If W ω denotes its symplectic
orthogonal, then the pair of canonical projections [60]

(V, ω)
ϕ1

yy

ϕ2

&&
(V/W, π1) (V/W ω, π2)

,

where the quotient spaces are endowed with the Poisson structures induced by ϕi, is a full
linear symplectic dual pair.

With the help of the contact orthogonal (2.61), we build in a similar way an example of
a linear contact dual pair. Let (V, ωH , E) be a contact vector space and let Ai = (αi, ai) ∈
V ∗×R× be conformal factors that satisfy π(α1, α2) = α2(XA1)−α1(XA2). Let W ⊆ V be a
linear subspace that contains the Hamiltonian vector XA2 . We endow each of the quotient
spaces V1 = V/W and V2 = V/W⊥A1 with the unique Jacobi structure that makes the
canonical projection ϕi : V → Vi a Jacobi map with conformal factor Ai. Then

(V, ωH , E)
ϕ1

yy

ϕ2

&&
V/W V/W⊥A1

is a full linear contact dual pair. What remains to be checked is the last identity of point 1
in the Proposition 2.2.5. Since Kerϕ1 = W and Kerϕ2 = W⊥A1 , this follows from

(W⊥A1 )⊥A2 = ((H ∩W )ωH ⊕ 〈XA1〉)⊥A2 = (H ∩W )⊕ 〈XA2〉 = W,

where we use the hypothesis XA2 ∈ W .

2.2.3 Symplectization of linear contact dual pairs

As in the differentiable setting, contact dual pairs lead to symplectic dual pairs by a sym-
plectization/Poissonization procedure [73, Section 4.2].

Proposition 2.2.7. Given a linear contact dual pair

(V, ωH , E)
ϕ1

ww

ϕ2

''
(V1, π1, E1) (V2, π2, E2)

(2.65)

of Jacobi maps with conformal factors A1 = (α1, a1) and A2 = (α2, a2), such that a1, a2 > 0,
the pair of Poisson maps

(V ⊕ R, ω̂)
ϕ̂
(A1)
1

ww

ϕ̂
(A2)
2

''
(V1 ⊕ R, π̂1) (V2 ⊕ R, π̂2)

(2.66)

is a linear symplectic dual pair.
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We notice that if the contact dual pair (2.65) is full, then the symplectic dual pair (2.66)
is full too.

Proof. By a direct computation based on the definition (2.41) of ϕ(A), and invoking point 1
of the Definition 2.2.1 we get

Ker ϕ̂
(A1)
1 =

{
x⊕ a−1

1 α1(x) : x ∈ Kerϕ1

}
=
{
x⊕ a−1

1 α1(x) : x ∈ H ∩Kerϕ1

}
⊕ 〈XA2 ⊕ a−1

1 α1(XA2)〉,

and a similar identity for Ker ϕ̂
(A2)
2 . In order to prove that (2.66) is a dual pair, first we show

that ω̂ (x1 ⊕ t1, x2 ⊕ t2) = 0 for all xi⊕ ti ∈ Ker ϕ̂
(Ai)
i , i = 1, 2. Due to the above description

of the kernel, this follows by checking the identities

ω̂
(
x1 ⊕ a−1

1 α1(x1), x2 ⊕ a−1
2 α2(x2)

)
= 0,

ω̂
(
x1 ⊕ a−1

1 α1(x1), XA1 ⊕ a−1
2 α2(XA1)

)
= 0,

ω̂
(
XA2 ⊕ a−1

1 α1(XA2), x2 ⊕ a−1
2 α2(x2)

)
= 0,

ω̂
(
XA2 ⊕ a−1

1 α1(XA2), XA1 ⊕ a−1
2 α2(XA1)

)
= 0,

for xi ∈ H ∩ Kerϕi, i = 1, 2. E.g. the last identity uses the point 3 in Definition 2.2.1 of a
contact dual pair as follows:

ω̂
(
XA2 ⊕ a−1

1 α1(XA2), XA1 ⊕ a−1
2 α2(XA1)

)
= ω (XA2 , XA1) + a−1

2 θ(XA2)α2(XA1)− a−1
1 θ(XA1)α1(XA2)

= π(α2, α1) + α2(XA1)− α1(XA2) = 0.

The vanishing of ω̂ on pairs of vectors that belong to the kernels of the Poisson maps ϕ̂
(A1)
1

and ϕ̂
(A2)
2 means the inclusion Ker ϕ̂

(A1)
1 ⊆

(
Ker ϕ̂

(A2)
2

)ω̂
. Combined with the dimension

count

dim Ker ϕ̂
(A1)
1 = dim Kerϕ1

(2.64)
= dim (Kerϕ2)⊥A2 = (dimV − 1)− (dim Kerϕ2 − 1) + 1

= dim (V ⊕ R)− dim Ker ϕ̂
(A2)
2 = dim

(
Ker ϕ̂

(A2)
2

)ω̂
,

this eventually proves that Ker ϕ̂
(A1)
1 and Ker ϕ̂

(A2)
2 are orthogonal with respect to the sym-

plectic form ω̂, hence (2.66) is a dual pair.

The condition a1, a2 > 0 in the statement of Proposition 2.2.7 is not a very restrictive
condition because, given Jacobi vector spaces (V, π, E) and (V ′, π′, E ′), a linear map ϕ :
V → V ′, and A = (α, a) ∈ V ∗ × R×, then ϕ : (V, π, E) → (V ′, π′, E ′) is an A-conformal
Jacobi map if and only if ϕ : (V, π, E) → (V ′,−π′,−E ′) is a conformal Jacobi map with
conformal factor −A = (−α,−a). In addition the two Jacobi vector spaces (V ′, π′, E ′) and
(V ′,−π′,−E ′) have the same characteristic subspace.
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Proposition 2.2.8. Given a linear contact dual pair (2.65) of Jacobi maps with conformal
factors A1 = (α1, a1) and A2 = (α2, a2), the pair of Poisson maps

(V ⊕ R, ω̂)
ϕ̃
(A1)
1

ww

ϕ̃
(A2)
2

''
(V1 ⊕ R, π̂1) (V2 ⊕ R, π̂2)

, (2.67)

where tilde-type linear maps are defined in (2.44), is a linear symplectic dual pair.

Proof. Invoking Remark 2.1.30 and the reasoning flow in the proof of Proposition 2.2.7, the
proof of the present claim is immediate from the obvious vector space equality

Ker ϕ̃(A) = Ker ϕ̂(A).

2.2.4 Characteristic subspace correspondence

We start with the symplectic dual pair setting. We recall that a symplectic realization of
a Poisson vector space (V ′, π′) is a symplectic vector space (V, ω) together with a linear
Poisson map ϕ : V → V ′. The characteristic subspace C ′ of V ′ is

C ′ = Imπ′
]

= ϕπ](Imϕ∗) = ϕπ]((Kerϕ)◦) = ϕ ((Kerϕ)ω) . (2.68)

Thus, the preimage of the characteristic subspace of V ′ is

ϕ−1(C ′) = Kerϕ+ (Kerϕ)ω. (2.69)

Proposition 2.2.9. In a full linear symplectic dual pair (3.97), the characteristic subspaces
C1, C2 of the two Poisson vector spaces V1, V2 are related by C2 = ϕ2(ϕ−1

1 (C1)). Their natural
symplectic forms ω1, ω2 satisfy:

ω = ϕ∗1ω1 + ϕ∗2ω2 on Kerϕ1 + Kerϕ2. (2.70)

Proof. The first part of the proposition follows from the orthogonality condition (Kerϕ1)ω =
Kerϕ2 together with the identities (2.68) and (2.69). The identity (2.70) is enough to be
checked on vectors of the form Yi = π](ϕ∗i (σi)) for σi ∈ V ∗i , i = 1, 2, since Kerϕ1 =
(Kerϕ2)ω = π](Imϕ∗2) and similarly for Kerϕ2. For instance if σ1, σ̄1 ∈ V ∗1 , then

(ϕ∗1ω1)(π]ϕ∗1σ1, π
]ϕ∗1σ̄1) = ω1(ϕ1π

]ϕ∗1σ1, ϕ1π
]ϕ∗1σ̄1) = ω1(π]1σ1, π

]
1σ̄1)

= π1(σ1, σ̄1) = π(ϕ∗1σ1, ϕ
∗
1σ̄1) = ω(π]ϕ∗1σ1, π

]ϕ∗1σ̄1),

while (ϕ∗2ω2)(π]ϕ∗1σ1, π
]ϕ∗1σ̄1) = 0.

The rest of the section is concerned with the analogous results in the setting of linear
Jacobi structures and linear contact dual pairs.
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Definition 2.2.10. A contact realization of a Jacobi vector space V ′ is a contact vector
space V together with a conformal Jacobi linear map ϕ : V → V ′.

Lemma 2.2.11. If ϕ : (V, ωH , E) → (V ′, π′, E ′) is a Jacobi map of factor A := (α, a) ∈
V ∗ × R× with Kerϕ transversal to H, then the characteristic subspace of V ′ is

C ′ = ϕ
(
(Kerϕ)⊥A

)
. (2.71)

Proof. Similarly to the proof of (2.68), the conclusion follows by a short calculation that
uses the definition of the characteristic subspace (2.33) associated with the Jacobi structure
(π,E), the definition of the contact orthogonal (2.63), the properties (2.40) of the considered
Jacobi map ϕ, and Lemma 2.1.12.

If in addition α ∈ Imϕ∗, then (Kerϕ)⊥A = (Kerϕ)⊥.

Corollary 2.2.12. If ϕ : (V, ωH , E) → (V ′, π′, E ′) is a Jacobi map of factor A := (α, a) ∈
V ∗×R×, then the preimage of the characteristic subspace associated with the Jacobi structure
(π′, E ′) reads

ϕ−1 (C ′) = Kerϕ+ (Kerϕ)⊥A . (2.72)

Proposition 2.2.13. In the full linear contact dual pair (2.56), the characteristic subspaces
C1 ⊆ V1 and C2 ⊆ V2 correspond to each other in the following sense:

ϕ1(ϕ−1
2 (C2)) = C1, ϕ2(ϕ−1

1 (C1)) = C2.

In addition, the dimensions of C1 and C2 have the same parity.

Proof. Let us denote

D := Kerϕ1 + Kerϕ2. (2.73)

The identities (2.64) and (2.72) lead to ϕ−1
1 (C1) = D = ϕ−1

2 (C2). Moreover, the following
computation that uses the surjectivity of ϕi,

codimCi = dimVi − dimCi = dimV − dimϕ−1
i (Ci)= dimV − dimD,

ensures that C1 ⊆ V1 and C2 ⊆ V2 have the same codimension. By (2.58) the dimensions
of V1 and V2 have the same parity, thus the dimensions of C1 and C2 have also the same
parity.

Theorem 2.2.14. In a full linear contact dual pair, the characteristic subspaces of the two
Jacobi vector spaces are either both odd dimensional (contact), or both even dimensional
(lcs). Moreover,

1. If the characteristic subspaces Ci ⊆ Vi are both contact, then their contact structures
(θi, ωi) are related to the contact structure (θ, ω) of V by

θ = a1ϕ
∗
1θ1 + a2ϕ

∗
2θ2 on D (2.74)

ω = α1 ∧ ϕ∗1θ1 + α2 ∧ ϕ∗2θ2 + a1ϕ
∗
1ω1 + a2ϕ

∗
2ω2 on D (2.75)
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2. If the characteristic subspaces Ci ⊆ Vi are both lcs, then their lcs structures (ωi, λi)
define a (”connection”) 1-form η on D by:

η := ϕ∗1λ1 − a−1
1 α1 = ϕ∗2λ2 − a−1

2 α2. (2.76)

and are related to the contact structure (θ, ω) of V by

ω + η ∧ θ = a1ϕ
∗
1ω1 + a2ϕ

∗
2ω2 on D. (2.77)

Proof. Because the subspace D ⊆ V is

D = Kerϕ1 + Kerϕ2
(2.59)
= π](Imϕ∗1 + Imϕ∗2) + 〈XA1〉+ 〈XA2〉,

it is enough to check the identities on vectors of the form: XAi and Yi = π](ϕ∗i (σi)), σi ∈ V ∗i ,
for i = 1, 2. One uses the fact that ϕi is an Ai-conformal Jacobi map, thus ϕi(XAi) = Ei
and aiϕiπ

]ϕ∗i = π]i , as well as all the three conditions in the contact dual pair definition.
Part 1. If the characteristic subspaces Ci ⊆ Vi are both contact, then their contact

structures (θi, ωi) are related to the contact structure (θ, ω) of V by

θ = a1ϕ
∗
1θ1 + a2ϕ

∗
2θ2 on D (2.78)

ω = α1 ∧ ϕ∗1θ1 + α2 ∧ ϕ∗2θ2 + a1ϕ
∗
1ω1 + a2ϕ

∗
2ω2 on D (2.79)

The identity (2.78) holds on XA1 :

θ(XA1)− a1θ1(ϕ1(XA1))− a2θ2(ϕ2(XA2)) = θ(a1E + π](α1))− a1θ1(E1)− 0 = a1 − a1 = 0.

The identity (2.79) holds on (XA1 , XA2) because the left hand side is

ω(XA1 , XA2) = ωH(pH(XA1), pH(XA2)) = ωH(π]α1, π
]α2) = π(α1, α2),

while the right hand side gives the same quantity by the point 3 in the contact dual pair
definition:

−α1(XA2)θ1(ϕ1(XA1))+α2(XA1)θ2(ϕ2(XA2)) = −a2α1(E)+a1α2(E)+2π(α1, α2) = π(α1, α2).

The same identity (2.79) holds on (Y1, XA2) because the left hand side is

ω(Y1, XA2) = ωH(π]ϕ∗1σ1, π
]α2) = π(ϕ∗1σ1, α2),

while the only non-zero term in the right hand side is

α2(Y1)θ2(ϕ2(XA2)) = α2(π]ϕ∗1σ1)θ2(E2) = π(ϕ∗1σ1, α2),

after noticing that θ1(ϕ1(Y1)) = π(ϕ∗1σ1, ϕ
∗
1θ1) = a−1

1 π1(σ1, θ1) = 0.
Part 2. If the characteristic subspaces Ci ⊆ Vi are both lcs, then their lcs structures

(ωi, λi) define a (”connection”) 1-form η on D by:

η := ϕ∗1λ1 − a−1
1 α1 = ϕ∗2λ2 − a−1

2 α2. (2.80)
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and are related to the contact structure (θ, ω) of V by

ω + η ∧ θ = a1ϕ
∗
1ω1 + a2ϕ

∗
2ω2 on D. (2.81)

The identity (2.80) holds on Y1 because the right hand side gives

(ϕ∗2λ2 − a−1
2 α2)(Y1) = π(ϕ∗1σ1, ϕ

∗
2λ2)− a−1

2 α2(π]ϕ∗1σ1)
(2.60)
= a−1

2 (ϕ∗1σ1)(π]α2)

= a−1
2 (ϕ∗1σ1)(XA2 − a2E) = −(ϕ∗1σ1)(E),

while, since E1 = ϕ1(XA1) and E1 = π]1(λ1), we obtain the same result for the left hand side:

(ϕ∗1λ1 − a−1
1 α1)(Y1) = π(ϕ∗1σ1, ϕ

∗
1λ1) + a−1

1 (ϕ∗1σ1)(π]α1)

= a−1
1 π1(σ1, λ1) + a−1

1 (ϕ∗1σ1)(XA1 − a1E)

= −a−1
1 σ1(π]1λ1) + a−1

1 σ1(E1)− (ϕ∗1σ1)(E) = −(ϕ∗1σ1)(E).

The same identity (2.80) holds on XA1 because

(ϕ∗1λ1 − a−1
1 α1)(XA1) = −a−1

1 α1(a1E + π]α1) = α1(E),

while

(ϕ∗2λ2 − a−1
2 α2)(XA1) = −a−1

2 α2(a1E + π]α1) = −a−1
2 (a1α2(E) + π(α1, α2))

and the point 3 in Definition 2.2.1 ensures they coincide.

The identity (2.81) holds on (Y1, XA2) because the right hand vanishes by Y1 ∈ Kerϕ2

and XA2 ∈ Kerϕ1. But

(ω + η ∧ θ)(Y1, XA2) = ωH(π]ϕ∗1σ1, π
]α2) + θ(XA2)η(Y1)

= π(ϕ∗1σ1, α2) + a2(−a−1
2 α2(π]ϕ∗1σ1)) = 0,

so the left hand side vanishes too.

2.3 Transversals and dual pairs

We define Poisson transversals in the linear setting. The genuine concept of Poisson transver-
sal was linked to symplectic dual pairs in [27]. Here we extract the properties of linear nature
on this subject. In the literature the Poisson transversals can be found also under the name
of cosymplectic submanifolds [83] or Poisson submanifolds of the second kind [82]. We have
chosen the name Poisson transversals, since it permits an adaptation to the Jacobi setting:
Jacobi transversals. These are also called Jacobi submanifolds of the second kind in [24, 54].
The relation between contact dual pairs and Jacobi transversals on their two legs has not
been developed in the differential geometric setting. Here we present the linear version,
leaving the differential geometric version for a future work.
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2.3.1 Poisson transversals and symplectic dual pairs

In this section we are closely following [27].

Definition 2.3.1. A linear subspace X of a Poisson vector space (V, π) is called a Poisson
transversal if it satisfies

V = X ⊕ π]X◦. (2.82)

Recall that the characteristic subspace C = Imπ] is endowed with the linear symplectic
form ωC induced by π as in (2.30). For any subspace X of V , we have

Ker(ωC |X∩C) = X ∩ π]X◦. (2.83)

Indeed, we know that this kernel is equal to X ∩C ∩π](X ∩C)◦, hence (2.83) holds because
of the vector subspace identities C◦ = Kerπ] and (X ∩ C)◦ = X◦ + C◦.

Proposition 2.3.2. X is a Poisson transversal if and only if it satisfies two conditions:

1. X is transverse to C,

2. X ∩ C is a symplectic subspace of the symplectic space (C, ωC).

Proof. Using (2.83), we obtain that point 2 is equivalent to X∩π]X◦ = 0. On the other hand
point 1 is equivalent to dimX + dimπ]X◦ = dimV , which concludes the characterization of
Poisson transversals by 1 and 2.

Remark 2.3.3 (Induced Poisson structure). Each Poisson transversal X of the Poisson
vector space (V, π) inherits a canonical Poisson structure πX given by

π]X := pX ◦ π] ◦ p∗X , (2.84)

where pX : V → X denotes the projection on the first factor in the decomposition (2.82). An
equivalent definition of πX is: the unique Poisson structure on X such that the projection
pX : (V, π)→ (X, πX) is a Poisson map.

Moreover, the characteristic subspace CX := Im π]X of X of the Poisson vector space X
is the projection of the characteristic subspace of V , i.e. CX = pX(C).

As a consequence, if the original Poisson structure on V is transitive (i.e. non-degenerate),
then the induced one on X is transitive (i.e. non-degenerate) too.

Corollary 2.3.4. The Poisson transversals of a symplectic vector space are its symplectic
subspaces.

Example 2.3.5. Any linear complement of the characteristic subspace C ⊆ V , is a Poisson
transversal. Its induced Poisson structure is trivial.

Lemma 2.3.6. Let ϕ : (V, π) → (V1, π1) be a Poisson map and let the linear subspace
X1 ⊆ V1 be a Poisson transversal. Then the following hold true:

1. The map ϕ is transverse to X1;
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2. The subspace X := ϕ−1(X1) of V is a Poisson transversal;

3. ϕ
(
π]X◦

)
= π]1X

◦
1 ;

4. The restriction ϕX : X → X1 is a Poisson map with respect to the induced Poisson
structures πX and (π1)X1

.

Proof. By the Poisson map property of ϕ written as ϕπ]ϕ∗ = π]1 we have that π]1X
◦
1 ⊆ Imϕ.

Hence V1 = X1 ⊕ π]1X◦1 = X1 + Imϕ, which shows 1.
The image of an arbitrary element v ∈ V by ϕ has a unique decomposition as

ϕ(v) = x1 + π]1η1, x1 ∈ X1, η1 ∈ X◦1 .

The element x := v − π]ϕ∗η1 satisfies ϕ(x) = x1, hence x ∈ X. Since ϕ∗η1 ∈ ϕ∗X◦1 ⊆ X◦,
we get v = x + π]ϕ∗η1 ∈ X + π]X◦, hence the decomposition V = X + π]X◦, a direct sum
decomposition by a dimension count. We conclude that X ⊆ V is a Poisson transversal.

The inclusion π]1X
◦
1 ⊆ ϕ(π]X◦) follows from the relations π]1 = ϕ◦π]◦ϕ∗ and ϕ∗X◦1 ⊆ X◦.

For the converse inclusion, let β ∈ X◦. We find x1 ∈ X1 and η1 ∈ X◦1 such that ϕ
(
π]β
)

=

x1 + π]1η1. Since x1 = ϕ
(
π] (β − ϕ∗η1)

)
∈ X1, the element π] (β − ϕ∗η1) ∈ X ∩ π]X◦ is zero,

so that ϕ
(
π]β
)

= π]1η1. Thus ϕ
(
π]X◦

)
⊆ π]1X

◦
1 and the identity 3 follows.

Let us denote by pX and pX1 the projections on the first factor associated with the
decompositions V = X ⊕ π]X◦ and V1 = X1 ⊕ π]1X◦1 respectively. Because ϕ(π]X◦) = π]1X

◦
1

(by point 3), there exists a unique linear map

ϕX : X → X1 such that pX1 ◦ ϕ = ϕX ◦ pX . (2.85)

The short calculation

ϕXπ
]
Xϕ
∗
X

(2.84)
= ϕXpXπ

]p∗Xϕ
∗
X

(2.85)
= pX1ϕπ

]ϕ∗p∗X1
= pX1π

]
1p
∗
X1

= π]X1

ensures that ϕX is a Poisson map.

The next proposition answers the question: when is a pair of Poisson maps again a
Poisson map?

Proposition 2.3.7. Given two linear maps ϕ1 and ϕ2 defined on the same symplectic vector
space (V, ω), the linear map

ϕ := (ϕ1, ϕ2) : V → (V1 × V2, π1 × π2) (2.86)

is Poisson if and only if (Kerϕ1)ω ⊆ Kerϕ2 and both ϕ1 and ϕ2 are Poisson.

Proof. Let π denote the linear Poisson structure on the symplectic space, i.e. π] = (ω[)−1.
The condition that the map ϕ is Poisson is written as ϕπ]ϕ∗ = (π1 × π2)]. The conclusion
follows by a direct computation involving the expression (2.50) of (π1×π2)], and that of the
dual of ϕ, namely ϕ∗(η1, η2) = ϕ∗1(η1) + ϕ∗2(η2). Indeed, for all ηi ∈ V ∗i , i = 1, 2, we get

ϕπ]ϕ∗(η1, η2) = (ϕ1π
](ϕ∗1(η1) + ϕ∗2(η2)), ϕ2π

](ϕ∗1(η1) + ϕ∗2(η2)))
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= (ϕ1π
]ϕ∗1η1, ϕ2π

]ϕ∗2η2) + (ϕ1π
]ϕ∗2η2, ϕ2π

]ϕ∗1η1)

(π1 × π2)](η1, η2) = (π]1η1, π
]
2η2).

This means that the map ϕ is Poisson if and only if both maps ϕ1, ϕ2 are Poisson, and the
identities ϕ1π

]ϕ∗2 = 0 and ϕ2π
]ϕ∗1 = 0 hold. The first identity can be written as (Kerϕ2)ω =

π](Kerϕ2)◦ = π] Imϕ∗2 ⊆ Kerϕ1 and the second one as the inclusion (Kerϕ1)ω ⊆ Kerϕ2,
which is equivalent to the first inclusion.

Theorem 2.3.8. We consider a linear symplectic dual pair

(V, ω)
ϕ1

zz

ϕ2

$$
(V1, π1) (V2, π2)

and linear Poisson transversals Xi ⊆ Vi, i = 1, 2. Then the vector subspace W := ϕ−1
1 (X1)∩

ϕ−1
2 (X2) of (V, ω) is symplectic (with induced symplectic form denoted by ωW ) and the pair

of Poisson maps obtained by restriction of ϕi, i = 1, 2,

(W,ωW )
(ϕ1)W

xx

(ϕ2)W

&&
(X1, πX1) (X2, πX2)

, (2.87)

form a linear symplectic dual pair.

Proof. Knowing that X1 and X2 are two Poisson transversals in (V1, π1) and (V2, π2) respec-
tively, the product X1 × X2 is a Poisson transversal in (V1 × V2, π1 × π2), because of the
identity (π1 × π2)](X1 ×X2)◦ = π]1X

◦
1 × π

]
2X
◦
2 .

Using the inclusion (Kerϕ1)ω ⊆ Kerϕ2 (that comes from the symplectic dual pair con-
dition (Kerϕ1)ω = Kerϕ2) and applying the Proposition 2.3.7, we get that ϕ = (ϕ1, ϕ2) is a
Poisson map. Invoking Lemma 2.3.6, we get that W := ϕ−1 (X1 ×X2) = ϕ−1

1 (X1)∩ϕ−1
2 (X2)

is a Poisson transversal in (V, ω), hence a symplectic subspace.
Again by Lemma 2.3.6, the restriction

ϕW : W → X1 ×X2, ϕW := ((ϕ1)W , (ϕ2)W ),

of ϕ is a Poisson map. Now using the Proposition 2.3.7, it follows on one hand that the
restrictions (ϕi)W , i = 1, 2, are Poisson maps (that completes point 2 in the theorem), and
on the other hand that

(Ker(ϕ1)W )ωW ⊆ Ker(ϕ2)W . (2.88)

The symplectic form ω vanishes on Kerϕ1×Kerϕ2, hence ωW vanishes as well on Ker(ϕ1)W×
Ker(ϕ2)W . The reverse inclusion to (2.88) follows, showing that (2.87) is a dual pair.

The dual pair (2.87) is full if and only if the original one is also full.
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2.3.2 Jacobi transversals and contact dual pairs

In this section we develop the linear algebraic theory of Jacobi transversals, which will be
later used for obtaining new contact dual pairs from a given one. The differential geometric
version of these results will be treated elsewhere.

Definition 2.3.9. A linear subspace X of the Jacobi vector space (V, π, E) is called a linear
Jacobi transversal if

V = X ⊕ π]X◦. (2.89)

Notice that being a Jacobi transversal depends only on the bi-vector π and not on the Reeb
vector E.

There is a characterization of Jacobi transversals, like that of Poisson transversals in
Proposition 2.3.2, that uses the characteristic subspace C = Imπ] + 〈E〉 and the non-
degenerate 2-form ωC on Im π] given by (2.30).

Proposition 2.3.10. The subspace X is a Jacobi transversal of (V, π, E) if and only if it
satisfies the following two conditions:

1. X is transverse to Imπ],

2. ωC restricted to X ∩ Imπ] is nondegenerate.

In the case E ∈ Im π], the characteristic subspace C = Imπ] is even dimensional and
it carries an lcs structure (ωC , E) (see the first item in Proposition 2.1.21). For any Jacobi
transversal X, the subspace X ∩ C is an lcs subspace of C.

In the case E /∈ Im π], the characteristic subspace C = Imπ]⊕〈E〉 is odd dimensional and
it carries a contact structure (C, ωH = ωC , E) (see the second item in Proposition 2.1.21).
For any Jacobi transversal X, the subspace X ∩ C is a contact subspace of C.

Proof. This proof relies on the identity (2.83), proven for the Poisson setting, which holds
in this Jacobi setting too. Assume first that X is a Poisson transversal, so it satisfies (2.89).
Then V = X + Imπ], so point 1 holds. Point 2 is equivalent to X ∩ π]X◦ = 0 by (2.83), so
it holds too.

Conversely, we assume that X satisfies 1 and 2. By taking into account that V =
X + Im π], we get that 0 = X◦ ∩ (Im π])◦ = X◦ ∩Ker π]. Thus π] is injective on X◦, hence

dim π]X◦ = dimX◦ = dimV − dimX. (2.90)

Using the point 2, we get by (2.83) that X ∩ π]X◦ = 0, which, with the dimension count
(2.90), proves the direct sum decomposition (2.89).

Remark 2.3.11 (Induced Jacobi structure). Each Jacobi transversal X of the Jacobi vector
space (V, π, E) inherits a canonical Jacobi structure (πX , EX),

π]X := pX ◦ π] ◦ p∗X , EX := pX(E), (2.91)

with pX : V → X denoting the projection on the first factor in (2.89). This is the unique
Jacobi structure on X such that the projection pX is a Jacobi map.
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In particular pX is a Jacobi map that satisfies Imπ]X = pX
(
Im π]

)
, thus the characteristic

subspace CX := Imπ]X + 〈EX〉 of X is the image of the characteristic subspace C ⊆ V ,
i.e. CX = pX(C). Moreover, E ∈ Im π] if and only if EX ∈ Im π]X . The direct implication
is obvious. So we give an argument for the reverse implication. Assuming that EX ∈ Imπ],
there exists η ∈ V ∗ such that EX = π]Xi

∗
Xη. By (2.91) we get pX(E) = pX(π]p∗X(i∗Xη)), so

that E − π]p∗X(i∗Xη) ∈ Ker pX = π]X◦, which implies E ∈ Im π].

As a consequence, the original Jacobi structure (π,E) is transitive if and only if the
induced one, (πX , EX), is transitive. They also have the same type: lcs or contact.

Corollary 2.3.12. The Jacobi transversals of a contact vector spaces are its contact vector
subspaces, and the Jacobi transversals of an lcs vector space are its lcs subspaces.

Example 2.3.13. Any linear complement X of Im π] in V is a Jacobi transversal. Moreover,
the induced Jacobi structure (πX , EX) has trivial bi-vector πX = 0. The Reeb vector EX
also vanishes if and only if E ∈ Im π].

Proposition 2.3.14. Let X be a vector subspace of the Jacobi vector space (V, π, E), with
E ∈ X. Then X is a Jacobi transversal of V if and only if X ⊕ R is a Poisson transversal
of its Poissonization (V ⊕ R, π̂) (defined in (2.25)).

Proof. The annihilator of X ⊕R in V ⊕R coincides with the annihilator X◦ of X in V . By
(2.26) we have that π̂](η ⊕ s) = (π](η)− sE)⊕ η(E), hence the image of the annihilator by
π̂] is

π̂]((X ⊕ R)◦) = {π](η)⊕ η(E) : η ∈ X◦} = π](X◦)⊕ 0,

because X◦ ⊆ E◦. In the light of this identity, the requested equivalence follows.

Lemma 2.3.15. Let ϕ : V → V1 be an A-conformal Jacobi map, A = (α, a) ∈ V ∗×R×, and
let X1 be a Jacobi transversal of (V1, π1, E1). Then the following hold true:

1. The map ϕ is transverse to X1;

2. The subspace X := ϕ−1(X1) is a Jacobi transversal of (V, π, E);

3. ϕ
(
π]X◦

)
= π]1X

◦
1 ;

4. The restriction ϕX : X → X1 is a conformal Jacobi map with respect to the induced
Jacobi structures, for the conformal factor AX = (α|X , a) ∈ X∗ × R×.

Proof. The fact that ϕ is an A-conformal Jacobi map translates into aϕπ]ϕ∗ = π]1 and
ϕ
(
E(A)

)
= E1, thus we have V1 = X1 ⊕ π]1X◦1 ⊆ X1 + Imϕ = Imϕ+X1, which shows item

1. The items 2 and 3 have the same proof as their counterparts in Lemma 2.3.6. To prove
item 4, we first check that aϕXπ

]
Xϕ
∗
X = π]X1

:

aϕXπ
]
Xϕ
∗
X

(2.91)
= aϕXpXπ

]p∗Xϕ
∗
X

(2.85)
= apX1ϕπ

]ϕ∗p∗X1
= pX1π

]
1p
∗
X1

(2.91)
= π]X1

.

We notice that the conformal factor AX can be written as (i∗Xα, a), with iX : X → V the
inclusion. To verify the equality ϕX(E(AX)) = EX1 , we compute

ϕX(E(AX))=ϕX(aEX + π]Xi
∗
Xα)

(2.91)
= ϕXpX(aE + π]p∗Xi

∗
Xα)

(2.85)
= apX1ϕ(E) + pX1ϕπ

](iXpX)∗α
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= apX1ϕ(E) + pX1ϕπ
](α) = pX1ϕ(E(A)) = pX1(E1) = EX1 ,

using at step four the identity ϕ
(
π]X◦

)
= Ker pX1 (that follows from item 3) applied to

α− (iXpX)∗α ∈ X◦. Thus ϕX is an AX-conformal Jacobi map.

When does a pair of conformal Jacobi maps build a conformal Jacobi map? It turns out
that the Jacobi structure on the product of Jacobi vector spaces has to depend on the two
conformal factors. Moreover, the kernels of the two maps have to satisfy an orthogonality
condition.

Proposition 2.3.16. We consider two linear maps ϕi : V → Vi, i = 1, 2, defined on the
contact vector space (V, ωH , E), and two pairs Ai = (αi, ai) ∈ V ∗ × R×, i = 1, 2, such that

XA1 ∈ Kerϕ2 and XA2 ∈ Kerϕ1. (2.92)

Let V1 × V2 be endowed with the product Jacobi structure

π̄ := (a2π1)× (a1π2), Ē := (1
2
a2E1,

1
2
a1E2). (2.93)

Then the linear map ϕ := (ϕ1, ϕ2) : V → V1 × V2 is conformal Jacobi of factor

A = (α, a) := (1
2
a2α1 + 1

2
a1α2, a1a2) ∈ V ∗ × R× (2.94)

if and only if the identity
(Kerϕ1 ∩H)ωH ⊆ Kerϕ2 ∩H

holds true and ϕi are conformal Jacobi maps of factors Ai, i = 1, 2.

Proof. The map ϕ is A-conformal Jacobi if and only if the identities

ϕ(XA) = Ē, aϕπ]ϕ∗ = π̄] (2.95)

hold true, with (π,E) the induced Jacobi structure on the contact vector space V . The first
identity in (2.95) is equivalent to

ϕ1(XA1) = E1 and ϕ2(XA2) = E2. (2.96)

This follows from the computation:

ϕ(XA) = ϕ
(
a1a2E + 1

2
a2π

]α1 + 1
2
a1π

]α2

)
= (ϕ1, ϕ2)

(
1
2
a1XA2 + 1

2
a2XA1

)
(2.92)
=
(

1
2
a2ϕ1(XA1),

1
2
a1ϕ2(XA2)

)
.

The second identity in (2.95) is equivalent to the following four identities:

π]1 = a1ϕ1π
]ϕ∗1, π]2 = a2ϕ2π

]ϕ∗2 (2.97)

ϕ1π
]ϕ∗2 = 0, ϕ2π

]ϕ∗1 = 0. (2.98)

This follows from the computation for ηi ∈ V ∗i , i = 1, 2:

aϕπ]ϕ∗(η1, η2) = a1a2(ϕ1, ϕ2)π](ϕ∗1η1 + ϕ∗2η2)
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= a1a2(ϕ1π
]ϕ∗1η1 + ϕ1π

]ϕ∗2η2, ϕ2π
]ϕ∗1η1 + ϕ2π

]ϕ∗2η2)

and from the expression π̄](η1, η2) = (a2π
]
1η1, a1π

]
2η2).

Using (2.24), the first identity in (2.98) can be rewritten as (H∩Kerϕ2)ωH = π](Kerϕ2)◦ =
π] Imϕ∗2 ⊆ H ∩ Kerϕ1 and the second one as the inclusion (H ∩ Kerϕ1)ωH ⊆ H ∩ Kerϕ2,
which is equivalent with the first inclusion. The identities (2.96) and (2.97) are equivalent
to the fact that ϕi is Ai-conformal Jacobi map for i = 1, 2.

Theorem 2.3.17. We consider a linear contact dual pair

(V, ωH , E)
ϕ1

ww

ϕ2

''
(V1, π1, E1) (V2, π2, E2)

,

with conformal factors Ai = (αi, ai) ∈ V ∗ ×R×, and two linear Jacobi transversals Xi ⊆ Vi,
i = 1, 2. Then the vector subspace

W := ϕ−1
1 (X1) ∩ ϕ−1

2 (X2), (2.99)

is a contact subspace of (V, ωH , E), and the pair of conformal Jacobi maps with conformal
factors (Ai)W := (αi|W , ai), obtained by restriction of ϕi, i = 1, 2,

W
(ϕ1)W

xx

(ϕ2)W

&&
(X1, πX1 , E1) (X2, πX2 , E2)

, (2.100)

form a linear contact dual pair.

Proof. The subspaceX1×X2 is a Jacobi transversal of
(
V1 × V2, π̄, Ē

)
. Because of the contact

dual pair conditions (the first two axioms in Definition 2.2.1) we can apply Proposition
2.3.16, so that ϕ = (ϕ1, ϕ2) is a conformal Jacobi map with conformal factor A given in
(2.94). Thus, the subspace W in (2.99), which can be expressed as W = ϕ−1 (X1 ×X2),
is a Jacobi transversal of the contact vector space (V, ωH , E), by Lemma 2.3.15, hence a
contact subspace, by Corollary 2.3.12. The induced contact structure on W is given by
the hyperplane HW = H ∩ W , the curvature form ωHW = ωH |H∩W and the Reeb vector
EW := pW (E), where pW : V → W denotes the projection on the first summand for
V = W ⊕ π]W ◦.

Again by Lemma 2.3.15, the restriction

ϕW : W → X1 ×X2, ϕW := ((ϕ1)W , (ϕ2)W ), (2.101)

of ϕ is a Jacobi map with conformal factor

AW = (α|W , a) =
(

1
2
a2α1|W + 1

2
a1α2|W , a1a2

)
.

The map ϕW is characterized by ϕW ◦pW = (pX1×X2)◦ϕ, with pX1×X2 the natural projection
associated to the Jacobi transversal X1 ×X2. Thus, its two components satisfy the identity

(ϕi)W ◦ pW = pXi ◦ ϕi, i = 1, 2, (2.102)
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which further leads to pW (EA1) ∈ Ker(ϕ2)W and pW (EA2) ∈ Ker(ϕ1)W . In addition,

pW (EAi) = aipW (E)+pWπ
](αi− (iWpW )∗αi)+(pWπ

]p∗W )i∗Wαi = aiEW +π]W i
∗
Wαi = X(Ai)W ,

due to the fact that
α− (iWpW )∗ α ∈ W ◦, α ∈ V ∗.

We conclude that

X(A1)W ∈ Ker(ϕ2)W and X(A2)W ∈ Ker(ϕ1)W ,

which permits to apply Proposition 2.3.16 to the conformal Jacobi map (2.101). On one hand
we obtain that the maps (ϕi)W , i = 1, 2 are conformal Jacobi of factors (Ai)W := (i∗Wαi, ai)
and on the other hand we get the inclusion

(HW ∩Ker(ϕ1)W )ωHW ⊆ HW ∩Ker(ϕ2)W . (2.103)

But the curvature form ωH vanishes on (H ∩Kerϕ1)× (H ∩Kerϕ2), hence ωHW vanishes as
well on (HW ∩ Ker(ϕ1)W ) × (HW ∩ Ker(ϕ2)W ) and the reverse inclusion to (2.103) follows,
showing that

(Ker(ϕ1)W ∩HW )ωHW = Ker(ϕ2)W ∩HW .

The contact dual pair conditions 1 and 2 in Definition 2.2.1 have been checked above, and
condition 3 follows immediately from the one for the given dual pair, thus the pair (2.100)
forms a linear contact dual pair.

The contact dual pair (2.100) is full if and only if the original one is full too.



Chapter 3

Jacobi pairs with background and
dual pairs

After the advent of Quantum Mechanics [25, 26], it was soon realized that Poisson geometry
is the fundamental ingredient of the quantization concept [7]. This special position comes
from the Poisson 2-vector which structures the set of classical observables as an algebra with
respect to the Poisson bracket. Recently, the intense search for a renormalizable theory for
gravitation in various space-time dimensions has given the Poisson structures new insights.
These are strongly involved in various modern models of two-dimensional gravity [47, 48, 49]
as well as in topological BF interacting models [8].

Nowadays, the progress of Poisson geometry knowledge has known two important mile-
stones that have produced a lot of new mathematical results. Both directions of research
have come as natural extensions of the Poisson structure. First of these was implemented
by spoiling the Leibniz rule verified by the Poisson bracket through a special vector field
and was done by the analysis of local Lie algebras [42] which revealed the Jacobi manifolds.
This concept of Jacobi structure, via the associated Jacobi bracket, plays an important role
in mathematical physics, namely in the canonical approach of non-autonomous Hamiltonian
systems [81, 76], in the integrability of Hamiltonian systems on odd-dimensional manifolds
[77, 78, 45] as well as in the geometric reformulation of non-equilibrium thermodynamics
[5]. The starting point of the second direction grew out of string theory, by the modification
of the Poisson identity through a closed 3-form (background). This relaxation has put into
evidence a new class of structures, namely the twisted Poisson (or Poisson with (closed)
3-form background) [70].

A joint generalization of the above structures is the twisted Jacobi structure [62], where
the obstruction to the Jacobi identity for a Jacobi bracket involves a 2-form and its de Rham
differential. Concerning these new structures, it has been shown that their characteristic dis-
tributions are integrable, with a twisted contact structure on the odd dimensional leaves and
a twisted locally conformal symplectic structure on the even dimensional leaves [64]. More-
over, it has been proved that the twisted Jacobi manifolds are in one-to-one correspondence
with homogeneous twisted Poisson manifolds, where the background 3-form is exact [62].

At this stage, it is natural to ask if we can further relax the twisted Jacobi concept
such that these extended structures i) are in a one-to-one relation with the homogeneous
Poisson structures with arbitrary 3-form background, and ii) display integrable characteristic

47



48 CHAPTER 3. JACOBI PAIRS WITH BACKGROUND AND DUAL PAIRS

distributions. The aim of this chapter is to prove that the answer to the previous questions
is positive, by introducing the concept of Jacobi structure with background (see Definition
3.1.3), where the background consists of a 3-form together with a 2-form. As shown in
Theorem 3.4.7, the odd dimensional characteristic leaves are twisted contact, just like in
the twisted Jacobi case. The even dimensional characteristic leaves admit a structure that
is more general than the twisted locally conformal symplectic one (obtained in the twisted
Jacobi case): we call it locally conformal symplectic structure with background (see Definition
4.4.4).

Similarly to the twisted version of a (symplectic) dual pair [37], we define and study
a twisted version (in the trivial line bundle setting) of the contact dual pair [73]. Via
”Poissonization”, a twisted contact dual pair yields a homogeneous twisted symplectic dual
pair. We show the correspondence of the characteristic leaves in the two Jacobi manifolds
with background in a twisted contact dual pair that is full and with connected fibers.

It is worth noticing that the analyzed structures find their ‘global’ expression [55] into
Jacobi bundles with background, structures that are to be approached in the next chapter.

The present chapter is organized into five sections as follows. In Section 2, we intro-
duce and exemplify the concept of Jacobi structure with background. Due to the special
framework–trivial line bundle, such structures consist of pairs of geometric objects (one 2-
vector field and one vector field) and will be addressed as Jacobi pairs with background. The
twisted Jacobi pairs and the Poisson structures with background are special cases of this new
construct. Section 3 is dedicated to the completion of the category whose objects are the
Jacobi manifolds with background (manifolds endowed with Jacobi pairs with background).
Here, we adapt and investigate the notions of Jacobi map and conformal Jacobi morphism
[62]. In Section 4, we prove that there is a one-to-one correspondence between Jacobi mani-
folds with background and homogeneous Poisson manifolds with background. Section 5 deals
with the (singular) characteristic distribution associated to a Jacobi pair with background.
Here, we prove that it is completely integrable and its characteristic leaves are either locally
conformal symplectic manifolds with background or twisted contact manifolds. Section 6
ends the chapter with twisted dual pairs in the symplectic and contact setting. We empha-
size two results, one concerning the characteristic leaf correspondence and the other about
”Poissonization” of a twisted contact dual pair.

The original contribution to this chapter is contained in [16, 17, 18].

3.1 The concept

Let M be a smooth manifold. We denote by Ωp (M) and Xp (M) the spaces of smooth p-forms
and smooth p-vector fields respectively, so Ω0 (M) = F (M) = X0 (M), where F (M) :=
C∞ (M) represents the set of real smooth functions defined on M . We adopt the conventions
from [55], concerning the wedge products, interior products, pairings between Ωp (M) and
Xp (M) and also those for Schouten-Nijenhuis bracket [ , ] on multi-vector fields. All of these
can be found in Chapter 1 of the present work.
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3.1.1 Twisted Jacobi pairs

Let M be a smooth manifold. A Jacobi structure with trivial line bundle [76], called a Jacobi
pair on M in [23, 9], is a pair (Π, E) built with a bi-vector field and a vector field that satisfy

1
2

[Π,Π] + E ∧ Π = 0, [E,Π] = 0. (3.1)

Equations (3.1) that define a Jacobi pair can be expressed in a more economical way, which
is suitable for generalization, as we sketch in the sequel. We consider the Lie algebroid

(TM × R, [[·, ·]], ρ) (3.2)

with bracket
[[(X, f), (Y, g)]] := ([X, Y ] , X(g)− Y (f)), (3.3)

with anchor the projection ρ on the first factor. It can be extended to the Gerstenhaber
bracket on Γ (∧• (TM × R)), which reads

[[(P,Q), (R, S)]] = ([P,R] , [P, S] + (−)r [Q,R]) . (3.4)

The Gerstenhaber algebra structure on Γ (∧• (TM × R)) is completed by the graded com-
mutative and associative multiplication

(P,Q) ∧ (R, S) = (P ∧R,P ∧ S − (−)rQ ∧R), (3.5)

where (P,Q) ∈ Γ (∧p+1 (TM × R)) ' Xp+1(M)× Xp(M) and
(R, S) ∈ Γ (∧r+1 (TM × R)) ' Xr+1(M)× Xr(M).

Now the two identities (3.1) can be expressed [40] in terms of the Gerstenhaber bracket
[[·, ·]](0,1) associated with the 1-cocycle (0, 1) ∈ Γ(T ∗M × R) as

1
2
[[(Π, E), (Π, E)]](0,1) = 0. (3.6)

The closedness of 1-cochain (0, 1) ∈ Γ(T ∗M×R) refers to the de Rham differential associated
with the Lie algebroid (3.2),

d (ω, α) := (dω,−dα) , (ω, α) ∈ Ωk (M)× Ωk−1 (M) , (3.7)

while the modified Gerstenhaber bracket has additional terms to (3.4):

[[(P,Q), (R, S)]](0,1) = ([P,R]− p(−)rP ∧ S + rQ ∧R,
[P, S] + (−)r [Q,R]− (p− r)Q ∧ S) .

(3.8)

Indeed, bracket (3.8) can be written in terms of (3.4) and (3.5) as

[[(P,Q), (R, S)]](0,1) = [[(P,Q), (R, S)]] + p(−)r(P,Q) ∧ j(0,1)(R, S)

− rj(0,1)(P,Q) ∧ (R, S)
(3.9)

with
j(0,1)(P,Q) = −(Q, 0).
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It is noteworthy that the homological degree 1 derivation acting on the module
Γ (∧•(T ∗M × R)) (over Ω•(M)) associated with the modified Gerstenhaber bracket (3.8)
reads

d(0,1) (ω, α) = (dω,−dα + ω) , (ω, α) ∈ Ωk (M)× Ωk−1 (M) . (3.10)

The notion of twisted Jacobi manifold (with trivial line bundle) was introduced in [62] as
follows.

Definition 3.1.1. [62] Let M be a smooth manifold. The structure ((Π, E), ω), consisting
in

Π ∈ X2 (M) , E ∈ X1 (M) , ω ∈ Ω2 (M)

and enjoying the properties

1
2

[Π,Π] + E ∧ Π = Π]dω + Π]ω ∧ E, [E,Π] = −
(
Π]iEdω + Π]iEω ∧ E

)
, (3.11)

is called a Jacobi pair (Π, E) twisted by the 2-form ω, or, simply, a twisted Jacobi pair.

In the previous formulae we use the notation

Π] : Ω1 (M)→ X1 (M) , Π]α := −jαΠ (3.12)

with jα the left interior product by 1-form α. We also use the same symbol for its extension
(by R- and F (M)-linearity) to Π] : Ωp(M)→ Xp(M).

Remark 3.1.2. [62] It is worth noticing that relations (3.11) are equivalent to twisted
Maurer-Cartan equation (3.6)

1
2
[[(Π, E), (Π, E)]](0,1) = (Π, E)]

(
d(0,1)(ω, 0)

)
,

where the F(M)-module morphism

(Π, E)] : Γ(∧k(T ∗M × R))→ Γ(∧k(TM × R)) (3.13)

is the linear extension of

Γ(T ∗M × R) 3 (β, f)
(Π,E)]7→ (Π](β) + fE,−iEβ) ∈ Γ(TM × R).

By direct computation, it results that the concrete expression of vector bundle map (3.13)
reads

(ω, θ)
(Π,E)]7→ (Π](ω)− (−)kΠ](θ) ∧ E,Π](iEω)− (−)kΠ](iEθ) ∧ E, ),

for any pair

(ω, θ) ∈ Ωk (M)× Ωk−1 (M) ' Γ(∧k(T ∗M × R)).
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3.1.2 Jacobi pairs with background

By definition, a twisted Poisson structure, also called a Poisson structure with (closed) 3-form
background [70] consists of a 2-vector field Π and a closed 3-form φ,

dφ = 0, (3.14)

connected via
1
2

[Π,Π] = Π]φ. (3.15)

It is said that the Poisson structure Π is twisted by the 3-form φ. The closedness con-
dition (3.14) allows the construction of a Courant algebroid structure on TM ⊕ T ∗M ,
((•, •), [•, •]φ , ρ), starting from ((•, •), [•, •] , ρ), which structures TM ⊕ T ∗M as a Courant
algebroid. Previously, we invoked the data

(X ⊕ α, Y ⊕ β) :=
1

2
(iXβ + iY α)

[X ⊕ α, Y ⊕ β] := [X, Y ]⊕ (LXβ − iY dα)

[X ⊕ α, Y ⊕ β]φ := [X, Y ]⊕ (LXβ − iY dα− iXiY φ)

ρ(X ⊕ α) := α.

In this Courant algebroid with twisted Dorfman bracket, [•, •]φ, the graph of the twisted
Poisson structure is a Dirac structure, which particularly implies its integrability [70].

In the sequel, we take into account Poisson structures with arbitrary 3-form background
that are shortly addressed as Poisson structures with background. Such structure has been
recently proposed in the context of sigma-models [13]. Other instances that display Poisson
structures with background come from quasi Poisson concept [1] (see Section 3.1.5 below).
In the light of this relaxation, we propose an extension of the Definition 3.1.1 to a Jacobi
structure with background.

Definition 3.1.3. The structure ((Π, E), (φ, ω)) consisting of

Π ∈ X2(M), E ∈ X1(M), φ ∈ Ω3(M), ω ∈ Ω2 (M) ,

defines a Jacobi pair (Π, E) with background (φ, ω) on M if it satisfies

1
2

[Π,Π] + E ∧ Π = Π]φ+ Π]ω ∧ E, [E,Π] = −
(
Π]iEφ+ Π]iEω ∧ E

)
. (3.16)

It is immediate that, if in (3.16) we consider E = 0 and ω = 0, we get nothing but a
Poisson structure with background (3.15). Moreover, if the background is of the form

(φ, ω) = d(0,1)(ω, 0) := (dω, ω),

we obtain the well-known twisted Jacobi structures (see Definition 3.1.1). It is noteworthy
that, by means of definition (3.10), the previous condition is equivalent to d(0,1)-closedness
of the pair (φ, ω).
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Remark 3.1.4. In terms of the Lie algebroid (3.2) with 1-cocycle (0, 1) ∈ Γ(T ∗M ×R) and
the modified Gerstenhaber bracket (3.8), the equations (3.16) are equivalent to

1
2
[[(Π, E), (Π, E)]](0,1) = (Π, E)](φ, ω).

In the same language, due to the fact that the homological degree 1 derivation d(0,1) in (3.10)
is acyclic, it results that twisted Jacobi structures are nothing but Jacobi structures with
closed background

d(0,1) (φ, ω) = 0. (3.17)

According to [62], the Dorfman bracket of the standard Courant-Jacobi algebroid structure
on the omni Lie algebroid (TM ×R)⊕ (T ∗M ×R) [80] can be twisted by (φ, ω) if and only
if (3.17) holds.

In view of evidencing the existence of such a structure, we give some illustrative examples.

Example 3.1.5. Let’s consider the four-dimensional smooth manifold R4 with the global
coordinates x = (x1, x2, x3, x4) and the real smooth functions a, b ∈ F (R4) among which a is
nowhere vanishing and b depends only on the first two coordinates b (x1, x2). The geometric
objects

Π = a−1 (∂1 ∧ ∂4 + ∂2 ∧ ∂3) , E = −a−1 ((∂1b) ∂4 + (∂2b) ∂3) ,

φ = d
(
a dx2 ∧ dx3 + a dx1 ∧ dx4

)
− ad

(
b dx2 ∧ dx3 + b dx1 ∧ dx4

)
, ω = 0

satisfy the equations (3.16) so it organizes R4 as a Jacobi manifold with background, with
non-closed 3-form φ and trivial twisting 2-form ω.

Example 3.1.6. Again, we consider the four-dimensional smooth manifold R4 and we take
functions a, b ∈ F (R4) with a nowhere vanishing. We globally define the geometric objects

Ω = a
(
dx1 ∧ dx2 + dx3 ∧ dx4

)
, φ = dω + (da+ a db) ∧ dx3 ∧ dx4, ω = a dx1 ∧ dx2.

(3.18)
The 2-form Ω is non-degenerate with inverse the bi-vector field Π given by

〈ρ ∧ λ,Π〉 :=
〈
Ω,Ω]ρ ∧ Ω]λ

〉
, ρ, λ ∈ Ω1 (M) , (3.19)

thus Π = −a−1 (∂1 ∧ ∂2 + ∂3 ∧ ∂4). This allows the construction of the vector field E = Π]db.
With these tools at hand, the pair ((Π, E), (φ, ω)) organizes R4 as a Jacobi manifold with
background. Here, the twisting 2-form ω is non-trivial.

Example 3.1.7. Let’s consider the four-dimensional smooth manifold R4 with the global
coordinates x = (x1, x2, x3, x4) and the real smooth functions f, e ∈ F (R4) among which f
is nowhere vanishing, f 2 > 0, and e depends only on the first two coordinates, e = e (x1, x2).
We introduce the geometric objects

Π =
1

f
(∂1 ∧ ∂4 + ∂2 ∧ ∂3) , E = − 1

f
((∂1e) ∂4 + (∂2e) ∂3) , (3.20)

φ = (df − fde) ∧ (x2 ∧ dx3 + dx1 ∧ dx4), ω = 0. (3.21)

Direct computations show that the geometric objects (3.20) and (3.21) verify the relations
(3.16) which means that ((Π, E), (φ, ω)) is a Jacobi pair with background.
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Example 3.1.8. Let’s consider again the four-dimensional smooth manifold R4 with the
global coordinates x = (x1, x2, x3, x4) and the smooth functions f , g, h, and e on R4 among
which f , and e verify the same restrictions as in the previous example. Construct the bi-
vector and vector fields as in (3.20) and

φ =
[
(∂3h∂2e+ ∂4f) dx2 + (∂3h∂1e− ∂3f) dx1

]
∧ dx3 ∧ dx4

+
[
(f − ∂2f∂2e− ∂1h∂2e+ ∂2h∂1e) dx4 +

(
∂1f + ∂3f̃∂2e

)
dx3
]
∧ dx1 ∧ dx2, (3.22)

ω = f (x) dx2 ∧ dx3 +
(
∂3f̃
)

dx3 ∧ dx1 + g (x) dx1 ∧ dx2 + dh ∧ dx4. (3.23)

In formulas (3.22) and (3.23) f̃ stands for an arbitrary smooth function that verifies ∂4f̃ =
f . By direct computation it can be checked that the pair ((Π, E), (φ, ω)) given in (3.20),
(3.22), and (3.23) satisfies the compatibility conditions (3.16), i.e. it is a Jacobi pair with
background. Simple computations show that the 2-form ω is non-trivial while the 3-form is
closed but

φ 6= dω.

3.1.3 Locally conformal symplectic structures with background

Definition 3.1.9. Let M be an even-dimensional smooth manifold endowed with a non-
degenerate 2-form Ω. Given α a closed 1-form (the Lee form)

dα = 0, (3.24)

and ω a 2-form, we define the 3-form

φ := dΩ + α ∧ (Ω− ω) . (3.25)

The structure ((Ω, α), (φ, ω)) on M is said to be a locally conformal symplectic structure
(Ω, α) with background (φ, ω).

The previous examples 3.1.7 and 3.1.6 exhibit such triplets, so they are locally conformal
symplectic structures with background.

Remark 3.1.10. If the Lee 1-form α vanishes, we have

φ = dΩ,

so we obtain the notion of twisted symplectic structure (also known under the name almost
symplectic structure) [36]. It induces a twisted Poisson structure (Π, φ) with Π the inverse
of Ω [68]. Another special case is

φ = dω,

when we recover the notion of twisted locally conformal symplectic structure [64], since

d(Ω− ω) + α ∧ (Ω− ω) = 0.
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Proposition 3.1.11. A locally conformal symplectic structure with background ((Ω, α), (φ, ω))
on the smooth manifold M naturally organizes M as a Jacobi manifold with background with
Π the inverse of Ω (3.19) and E := Ω]α.

Proof. Using the Koszul relation (that connects right inner multiplications by p-vectors and
Schouten bracket) [55]

i[P,Q] = − [[iQ, d] , iP ] , P ∈ Xp (M) , Q ∈ Xq (M) (3.26)

and definition (3.19), by direct computation we get

i1
2

[Π,Π]
(ρ ∧ λ ∧ µ) = −iΠdiΠ (ρ ∧ λ ∧ µ) =

∑
cyclic

iΠ [ρ ∧ diΠ (λ ∧ µ)]

=
∑
cyclic

Ω]ρ
(
〈Ω,Ω]λ ∧ Ω]µ〉

)
(3.27)

for arbitrary closed 1-forms ρ, λ, and µ. Using (3.19), it further leads to

iE∧Π (ρ ∧ λ ∧ µ) = iΠiE (ρ ∧ λ ∧ µ) =
∑
cyclic

iEρiΠ (λ ∧ µ) =
∑
cyclic

iEρ〈Ω,Ω]λ ∧ Ω]µ〉. (3.28)

Combining the relations (3.25) and (3.19), by direct computations we establish

iΠ]φ (ρ ∧ λ ∧ µ) = −〈φ,Π]ρ ∧ Π]λ ∧ Π]µ〉 = −〈dΩ,Ω]ρ ∧ Ω]λ ∧ Ω]µ〉
− 〈α ∧ Ω,Ω]ρ ∧ Ω]λ ∧ Ω]µ〉+ 〈α ∧ ω,Ω]ρ ∧ Ω]λ ∧ Ω]µ〉

=
∑
cyclic

Ω]ρ
(
〈Ω,Ω]λ ∧ Ω]µ〉

)
+ iEρ〈Ω,Ω]λ ∧ Ω]µ〉 − iEρ〈ω,Ω]λ ∧ Ω]µ〉

(3.29)

and
iΠ]ω∧E (ρ ∧ λ ∧ µ) = iEiΠ]ω (ρ ∧ λ ∧ µ) =

∑
cyclic

iEρ
〈
ω,Ω]λ ∧ Ω]µ

〉
. (3.30)

The results (3.27)–(3.30) allow us to conclude that the first relation in (3.16) holds.
Using again formula (3.26), we get for all ρ, λ ∈ Λ1(M):

i[E,Π](ρ ∧ λ) = −iΠdiE (ρ ∧ λ) + iEdiΠ (ρ ∧ λ)

= −Ω]ρ (〈λ,E〉) + Ω]λ (〈ρ, E〉)− E
(
〈Ω,Ω]ρ ∧ Ω]λ〉

)
. (3.31)

In addition, direct computations based on the definitions (3.25) and (3.19) reveal

iΠ]iEφ (ρ ∧ λ) =
〈
dΩ, E ∧ Ω]ρ ∧ Ω]λ

〉
− iEρ

〈
Ω,Ω]λ ∧ E

〉
+ iEλ

〈
Ω,Ω]ρ ∧ E

〉
+ iEρ〈ω,Ω]λ ∧ E〉 − iEλ〈ω,Ω]ρ ∧ E〉
= Ω]ρ (〈λ,E〉)− Ω]λ (〈ρ, E〉) + E

(
〈Ω,Ω]ρ ∧ Ω]λ〉

)
+ iEρ〈ω,Ω]λ ∧ E〉 − iEλ〈ω,Ω]ρ ∧ E〉 (3.32)

and

iΠ]iEω∧E (ρ ∧ λ) = iEiΠ]iEω (ρ ∧ λ) = −iEρ
〈
ω,Ω]λ ∧ E

〉
+ iEλ

〈
ω,Ω]ρ ∧ E

〉
. (3.33)

Finally, the equalities (3.31)–(3.33) prove that the second identity in (3.16) also takes place.
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3.1.4 Twisted contact structures

Let M be a (2m+1)-dimensional smooth manifold. The pair of forms (θ, ω) with ω ∈ Ω2(M)
and θ ∈ Ω1(M), such that

µ := θ ∧ (dθ + ω)m 6= 0 (3.34)

is a volume form on M , is said to be a twisted (co-orientable) contact structure [62].
The Hamiltonian vector field to f ∈ F(M) is defined as the unique solution Xf to

iXf θ = f, iXf (dθ + ω) = iE (df ∧ θ) , (3.35)

Proposition 3.1.12. Let (θ, ω) be a twisted contact structure on the smooth manifold M .
Then it naturally organizes M as a twisted Jacobi manifold with respect to ((Π, E), ω), where
E is the unique vector field (Reeb vector field) that satisfies

iEθ = 1, iE(dθ + ω) = 0, (3.36)

and
iΠ (df ∧ dg) := 〈dθ + ω,Xf ∧Xg〉, f, g ∈ F(M). (3.37)

Proof. Employing the equations (3.36)–(3.35), it can be shown that the 2-vector field Π
given by (3.37) verifies

iΠ]αθ = 0, iΠ]α (dθ + ω) = iE (α ∧ θ) = −α + (iEα)θ, α ∈ Ω1(M). (3.38)

By means of these results, direct computations show that the structure ((Π, E), ω)) is twisted
Jacobi. It is worth noticing that this output has been exhibited in [64] where the bivector
Π is defined via (3.38).

It is immediate that the 2-form Ω = dθ + ω restricted to the hyperplane distribution
H := ker θ is non-degenerate. Indeed, taking into account the second indentity in (3.38) and
using a dimension count we deduce an expression for the orthogonality on H with respect
to Ω:

V ⊥ = Π](V ◦), V ⊆ H, (3.39)

where V ◦ ⊆ T ∗M denotes the annihilator of V .

3.1.5 Quasi Poisson/Jacobi structures

A quasi Poisson structure [1] on the manifold M comes with a Lie algebra action, i.e. a Lie
algebra homomorphism a : g→ X(M), and an invariant inner product · on g, such that

1
2

[Π,Π] = a(χ), La(ξ)Π = [a(ξ),Π] = 0, ξ ∈ g, (3.40)

where χ ∈ Λ3g denotes the Cartan 3-tensor. If the g-action is tangent to the characteristic
distribution Im Π], then a(χ) = Π]φ with φ ∈ Ω3(M) and the quasi Poisson structure induces
a Poisson structure with background that is a not necessarily closed 3-form φ.

A quasi Jacobi structure [63] involves an additional ingredient: a Lie algebra 1-cocyle
λ ∈ g∗, which means that λ vanishes on [g, g]. The Lie algebra homomorphism aλ : g →
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Γ(TM × R) with respect to the Lie algebroid bracket (3.3), given by aλ(ξ) = (a(ξ), λ(ξ)),
is called a g-action on M with 1-cocycle λ [63]. Similarly to (3.40), by definition a quasi
Jacobi structure satisfies:

1
2
[[(Π, E), (Π, E)]](0,1) = aλ(χ), L(0,1)

aλ(ξ)
(Π, E) = 0, ξ ∈ g. (3.41)

If the Lie algebra action with 1-cocycle is tangent to the distribution Im(Π, E)] ⊆ TM ×R,
then

aλ(χ) = (Π, E)](φ, ω) ∈ Γ(Λ3(TM × R)) (3.42)

with φ ∈ Ω3(M) and ω ∈ Ω2(M). In this case the quasi Jacobi structure induces a more
general structure than the twisted-Jacobi one, since φ is not necessarily equal to dω, thus a
Jacobi structure with background.

The Cartan 3-tensor defined by the invariant inner product · on g is

χ = 1
12
fabcea ∧ eb ∧ ec ∈ Λ3g,

where {ea} is an orthonormal basis and fabc = ea · [eb, ec]. Thus the 3-vector component of
aλ(χ) is

1
12
fabca(ea) ∧ a(eb) ∧ a(ec) = a(χ).

On the other hand the 2-vector component of aλ(χ),

1
12
fabc (λ(ea)a(eb) ∧ a(ec) + λ(eb)a(ec) ∧ a(ea) + λ(ec)a(ea) ∧ a(eb)) ,

vanishes because, by the 1-cocycle condition for λ ∈ g∗, we have for all indices b, c:

fabcλ(ea) = λ((ea · [eb, ec])ea) = λ([eb, ec]) = 0.

Thus, in the definition (3.41) of a quasi-Jacobi manifold, we actually have:

aλ(χ) = (a(χ), 0) ∈ Γ(Λ3(TM × R)) = X3(M)× X2(M).

Because the expression of (3.13) for k = 3 is

(Π, E)](φ, ω) = (Π]φ+ Π]ω ∧ E,−Π]iEφ− Π]iEω ∧ E),

from the identity (3.42) we deduce an additional condition on the background forms (φ, ω)
on a quasi Jacobi manifold:

Π]iEφ+ Π]iEω ∧ E = 0.

3.2 Brackets for Jacobi structures with background

3.2.1 Brackets and Hamiltonian vector fields

Starting with a Jacobi manifold with background (M, ((Π, E), (φ, ω))) and using the same
type of Jacobi bracket as for twisted Jacobi manifolds [62], we endow the set of smooth
functions F(M) with the bracket

{f, g} := iΠ (df ∧ dg) + iE (fdg − gdf) , f, g ∈ F(M). (3.43)
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Definition (3.43) displays a skew-symmetric, bi-differential operator of the F(M)-module
F(M)

{f, gh} = (Xfg)h+ g {f, h} , f, g, h ∈ F(M),

where

Xf := Π]df + fE (3.44)

is the Hamiltonian vector field corresponding to the smooth function f . In the special case
of a twisted contact manifold, this Hamiltonian vector field coincides with the one given in
(3.35).

The bracket (3.43) can be also expressed using Hamiltonian vector fields as

{f, g} = iXfdg − giEdf. (3.45)

In general, this twisted Jacobi bracket doesn’t satisfy the Jacobi identity.

Proposition 3.2.1. The bracket (3.43) satisfies

Jac {f, g, h} = −iXf∧Xg∧Xhφ+ (LEf)iXg∧Xhω + (LEg)iXh∧Xfω + (LEh)iXf∧Xgω, (3.46)

with the Jacobiator defined by

Jac {f, g, h} := {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} .

Proof. By means of definition (3.43), direct computations display

{f, {g, h}} = −iΠd (iΠ (dg ∧ dh) df) + iΠ (df ∧ LE (gdh− hdg))

− 2iΠ (df ∧ iE (dg ∧ dh)) + fLE (iΠ (dg ∧ dh) + iE (gdh− hdg))

− LEf (iΠ (dg ∧ dh) + gLEh− hLEg) . (3.47)

By considering the cyclic permutations of result (3.47), we get

Jac {f, g, h} = −iΠdiΠ (df ∧ dg ∧ dh) + iΠiE (df ∧ dg ∧ dh)

−
∑
cyclic

(iΠLE (fdg ∧ dh)− iEdiΠ (fdg ∧ dh)) . (3.48)

At this stage, Koszul relation (3.26) expresses the previous result into

Jac {f, g, h} = i1
2

[Π,Π]
(df ∧ dg ∧ dh) + iE∧Π (df ∧ dg ∧ dh)

+ i[E,Π] (fdg ∧ dh+ gdh ∧ df + hdf ∧ dg) , (3.49)

that, by means of identities (3.16), eventually proves (3.46).
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3.2.2 Conformal factors

Adapting the construction of conformal related Jacobi structures [33], [24] to the current
context, it can be shown that for a given manifold M equipped with a Jacobi structure
with background ((Π, E), (φ, ω)) there exists a family of Jacobi structures with background
((Πa, Ea), (φa, ωa)) parameterized by smooth nowhere vanishing functions a on M , such that
the corresponding brackets are conformally related

{f, g}a = a−1 {af, ag} . (3.50)

Proposition 3.2.2. Given a Jacobi structure with background ((Π, E), (φ, ω)) on M and a
nowhere vanishing function a ∈ F(M),

Πa = aΠ, Ea = aE + Π]da, φa = a−1φ+ d
(
a−1
)
∧ ω, ωa = a−1ω. (3.51)

define another Jacobi structure with background on M .

The two structures are called conformally related Jacobi structures with background. No-
tice that Ea = Xa, the Hamiltonian vector field for a ∈ F(M).

If the original structure ((Π, E), (φ, ω)) is twisted Jacobi, i.e. φ = dω, then the confor-
mally related one ((Πa, Ea), (φa, ωa)) is also a twisted Jacobi, i.e. φa = dωa. It is worth
noticing that the conformally related twisted Jacobi structures have been explicitly given in
[62] and [65].

Proof. The Schouten-Nijenhuis bracket

[Πa,Πa] = −2aΠ]da ∧ Π + a2 [Π,Π] ,

further gives
1
2

[Πa,Πa] + Ea ∧ Πa = a2
(
Π]φ+ Π]ω ∧ E

)
. (3.52)

On the other hand

(Πa)]φa + (Πa)]ωa ∧ Ea = a3Π](a−1φ+ d
(
a−1
)
∧ ω) + a2Π](a−1ω) ∧ (aE + Π]da)

= a2
(
Π]φ+ Π]ω ∧ E

)
,

so the first identity in (3.16) is satisfied. The second one is obtained similarly.

Proposition 3.2.3. The corresponding brackets of two conformally related Jacobi structures
with background ((Π, E), (φ, ω)) and ((Πa, Ea), (φa, ωa)) satisfy (3.50).

Proof. Combining definition (3.43) with the relations (3.51), we get

{f, g}a = iaΠ (df ∧ dg) + iaE+Π]da (fdg − gdf)

= aiΠ (df ∧ dg) + iΠ (da ∧ (fdg − gdf)) + aiE (fdg − gdf)

= a−1iΠ (d(af) ∧ d(ag)) + a−1iE ((af)d(ag)− (ag)d(af)) = a−1{af, ag},

the requested relation between the conformally related brackets.
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3.2.3 Jacobi maps

At this stage, we complete with morphisms the category of Jacobi manifolds with back-
ground.

Definition 3.2.4. Let (Mi, ((Πi, Ei), (φi, ωi))), i = 1, 2, be two Jacobi manifolds with back-
ground. A smooth map F : M1 →M2 is said to be a Jacobi map if and only if

F ∗ {f, g}2 = {F ∗f, F ∗g}1 , f, g ∈ F(M2). (3.53)

Proposition 3.2.5. In the stated context, the smooth map F : M1 → M2 is a Jacobi map
between Jacobi manifolds with background if and only if the pair of vector fields (E1, E2) and
the pair of bi-vector fields (Π1,Π2) are F -related. i.e.

Π2 ◦ F = TF ◦ Π1, E2 ◦ F = TF ◦ E1, (3.54)

where we denote by TF both the tangent map and its extension (by linearity) to p-vectors.

Proof. Let f and g be two arbitrary smooth functions on M2. We successively establish

{F ∗f, F ∗g}1 = iΠ1F
∗ (df ∧ dg) + iE1F

∗ (fdg − gdf)

= F ∗
(
iTF (Π1) (df ∧ dg) + iTF (E1) (fdg − gdf)

)
.

Furthermore, definition (3.43) exhibits

F ∗ {f, g}2 = F ∗ (iΠ2 (df ∧ dg) + iE2 (fdg − gdf)) .

In the light of the last two results, it is clear that (3.53) holds if and only if (3.54) take
place.

Remark 3.2.6. It can be shown that the previous smooth map F is a Jacobi map if and
only if the Hamiltonian vector fields (XF ∗f , Xf ) are F -related vector fields for all f ∈ F(M2),
i.e.

TF (XF ∗f ) = Xf ◦ F, f ∈ F(M2). (3.55)

Indeed, the definition of Hamiltonian vector fields (3.44) displays

XF ∗f = Π]
1dF ∗f + (F ∗f)E1 = Π]

1F
∗df + (F ∗f)E1.

which further gives

TF (XF ∗f ) = TF ◦ Π]
1F
∗df + (F ∗f)TF (E1).

Invoking Proposition 3.2.5, where the first relation in (3.54) is equivalent to Π]
2 = TF ◦Π]

1F
∗,

it is clear that F is a Jacobi map if and only if (3.55) holds.

Remark 3.2.7. Assuming that F : M1 → M2 is a Jacobi map, we analyze the relation
between the pairs of forms (φ1, ω1) and (φ2, ω2). In view of this, we apply twice the Definition
3.2.4 and get

F ∗Jac {f, g, h}2 = Jac {F ∗f, F ∗g, F ∗h}1 , f, g, h ∈ F (M2) .
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The last result together with (3.46) and (3.55) further give

〈F ∗φ2, XF ∗f ∧XF ∗g ∧XF ∗h〉 − (LE1 (F ∗f) 〈F ∗ω2, XF ∗g ∧XF ∗h〉+ cycl.)

= 〈φ1, XF ∗f ∧XF ∗g ∧XF ∗h〉 − (LE1 (F ∗f) 〈ω1, XF ∗g ∧XF ∗h〉+ cycl.) , (3.56)

which eventually implies that

F ∗φ2 = φ1, F ∗ω2 = ω1,

but only on the distribution generated by the Hamiltonian vector fields of the form XF ∗f =

Π]
1(F ∗df) + (F ∗f)E1 with f ∈ F(M2), i.e. on the distribution Π]

1((kerTF )◦) + 〈E1〉.

Finally, by ‘gluing’ the bracket (3.50) to the concept of Jacobi map (see Definition 3.2.4)
we are in the position to introduce the conformal Jacobi map as a smooth map F between
the Jacobi manifolds with background (Mi, ((Πi, Ei), (φi, ωi))), i = 1, 2 that fulfills

F ∗ {f, g}2 = {F ∗f, F ∗g}a1 , f, g ∈ F (M2) . (3.57)

Definition (3.57) combined with the Propositions 3.2.3 and 3.2.5 ensure that the previous map

is a conformal Jacobi one if and only if Π2◦F = TF ◦(aΠ1) and E2◦F = TF
(
aE1 + Π]

1da
)

.

Moreover, because of (3.51), the background forms satisfy:

F ∗φ2 = a−1φ1 + d
(
a−1
)
∧ ω1, F ∗ω2 = a−1ω1

on the distribution Π]
1((kerTF )◦) + 〈Xa〉 in M1. These relations can be rewritten as

φ1 = aF ∗φ2 + da ∧ F ∗ω2, ω1 = aF ∗ω2. (3.58)

3.3 ”Poissonization” of Jacobi manifolds with back-

ground

In this section, we address the problem of a kind of Poissonization [76], [62] for a given Jacobi
manifold with a background. In view of this, we define the homogeneous Poisson manifold
with background as being a Poisson manifold with background (M, (Π, φ)) that displays a
vector field Z enjoying

[Z,Π] = −Π, LZφ = φ. (3.59)

Proposition 3.3.1. If (M, (Π, E), (φ, ω)) is a Jacobi manifold with background, then the
manifold M̃ := M × R can be naturally endowed with a Poisson structure with background
(Π̃, φ̃),

Π̃ := e−τ (Π + ∂τ ∧ E) , φ̃ := eτ (φ+ ω ∧ dτ) , (3.60)

that is homogeneous with respect to the vector field Z := ∂τ ., i.e., (3.59) take place.

Proof. Putting together the relations (3.16) verified by the given Jacobi structure with back-
ground ((Π, E), (φ, ω)) and the first definition in (3.60), by direct computations we get[

Π̃, Π̃
]

= 2e−2τ
[
Π]φ+ Π]ω ∧ E − ∂τ ∧

(
Π]iEφ+ Π]iEω ∧ E

)]
. (3.61)
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Also, if we take x = (xi) a local chart on M such that

E = Ei∂i, ω = 1
2
ωijdx

i ∧ dxj, φ = 1
6
φijkdx

i ∧ dxj ∧ dxk, (3.62)

then the first definition in (3.60) gives

Π̃]dxi = e−τ
(
Π]dxi − Ei∂τ

)
, Π̃]dτ = e−τE. (3.63)

At this stage, by means of the expressions (3.62) and (3.63) we obtain

Π̃]φ = e−3τ
(
Π]φ− ∂τ ∧ Π]iEφ

)
, Π̃]ω = e−2τ

(
Π]ω − ∂τ ∧ Π]iEω

)
. (3.64)

Finally, inserting the results (3.64) into the right hand side of (3.61) and using the second
definition in (3.60) we get that Π̃ and φ̃ are subject to the equation (3.15). Moreover, direct
computations lead to the fact that the geometric objects given in (3.60) verify (3.59) for
Z = ∂τ .

As it has been established in [62], by considering a background of the form (φ, ω) =
(dω, ω) in the previous proposition, we get an exact background 3-form φ̃ = d (eτω), hence
the following result:

Corollary 3.3.2. The ”Poissonization” of a twisted Jacobi structure ((Π, E), ω) on M is
the manifold M̃ = M × R, endowed with the twisted Poisson structure (Π̃, d(eτω)).

Remark 3.3.3. Let (θ, ω) be a twisted contact structure on the manifold M , with in-
duced twisted Jacobi structure ((Π, E) , ω), offered by Proposition 3.1.12. Then, according
to Proposition 3.3.1, the ”Poissonization” yields the homogeneous Poisson structure with
background (Π̃, φ̃) on M × R, where Π̃ is non-degenerate with its inverse the 2-form

Ω̃ = eτ (dθ + ω − dτ ∧ θ) (3.65)

and
φ̃ = d (eτω) = dΩ̃.

Thus we obtain a twisted symplectic structure Ω̃ on M × R. Of course, when ω = 0 this is
nothing but the symplectization of a contact structure.

Proposition 3.3.4. Let (Mi, (Πi, Ei), (φi, ωi)), i = 1, 2, be two Jacobi manifolds with back-
ground and F : M1 → M2 be a smooth map. Then F is a Jacobi map if and only if the
smooth map

F̃ : M1 × R→M2 × R, F̃ (x, τ) := (F (x), τ)

is a Poisson map between the corresponding Poisson structures with background (Π̃i, φ̃i),
i = 1, 2.

Proof. Combining the results offered by the Propositions 3.2.5 and 3.3.1 with the expression
of the tangent map T F̃ (X ⊕ τ) = TF (X)⊕ τ , we get Π̃2 ◦ F̃ = T F̃ ◦ Π̃1, and the conclusion
follows.
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3.4 Transitive Jacobi manifolds with background

3.4.1 Characteristic distribution

The characteristic distribution corresponding to a Jacobi structure with background ((Π, E), (φ, ω))
on a smooth manifold M is defined by

C (M) =
⋃
p∈M

Cp(M) :=
⋃
p∈M

〈{Ep} ∪ Im Π]
p〉. (3.66)

It coincides with that generated by the Hamiltonian vector fields (3.44):

C (M) =
⋃
p∈M

〈{
(Xf )p : f ∈ F(M)

}〉
.

This further implies the smoothness of the characteristic distribution.

Proposition 3.4.1. The characteristic distribution corresponding to a Jacobi structure with
background is involutive.

Proof. We show that
[Xf , Xg] (p) ∈ Cp(M), f, g ∈ F(M).

Combining definitions (3.43) and (3.44), as well as Koszul relation (3.26), we successively
obtain

[Xf , Xg]h−X{f,g}h = Jac {f, g, h}+ {f, hEg} − {g, hEf}+ (Xgh)Ef

− (Xfh)Eg − hE {f, g}
= Jac {f, g, h} − h [LE, iΠ] (df ∧ dg)

= Jac {f, g, h} − hi[E,Π] (df ∧ dg) .

Inserting in the right hand side of the previous equality the relations (3.16) and (3.46), we
get

[Xf , Xg]−X{f,g} = Π]iXf∧Xgφ− (Ef) Π]iXgω + (Eg) Π]iXfω +
(
iXf∧Xgω

)
E, (3.67)

that proves the proposition.

Definition 3.4.2. A Jacobi manifold with background (M, ((Π, E), (φ, ω))) is said to be
transitive if its characteristic distribution C (M) coincides, at each point of the manifold,
with the tangent space, i.e.

TpM =
〈
{Ep} ∪ Im Π]

p

〉
, p ∈M. (3.68)

Remark 3.4.3. From Definition 3.4.2 it is clear that in the context of transitive Jacobi
structures with background, if M is even-dimensional then the 2-vector field Π is non-
degenerate (i.e. Π] is a vector bundle isomorphism with the inverse Π[ [51]) and

E ∈ Im Π]. (3.69)

On the other hand, if M is odd-dimensional then dim Im Π] + 1 = dimM and

Ep /∈ Im Π]
p, p ∈M. (3.70)
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Example 3.4.4. Examples of transitive Jacobi structures with background are the locally
conformal symplectic structures with background (see section 4.2.3) and the twisted contact
structures (see section 3.1.4). We will see in Theorem 3.4.6 that these are the only transitive
Jacobi structures with background.

3.4.2 Gauges for the background

Returning to Definition 3.1.3, it is natural to ask how much freedom is left for the exterior
forms φ and ω, once we fix the vector and 2-vector fields E and Π respectively? We answer
this question for transitive Jacobi manifolds with background as follows.

Theorem 3.4.5. Let M be a smooth manifold and ((Π, E), (φi, ωi)), i = 1, 2 be two transitive
Jacobi pairs with background on M . The following alternative holds:

1. If M is even-dimensional then there exists a 2-form ω, such that

ω1 = ω2 + ω, φ1 = φ2 − ω ∧ Π[E; (3.71)

2. If M is odd-dimensional then

ω1 = ω2, φ1 = φ2. (3.72)

Proof. When M is transitive even-dimensional, Remark 3.4.3 together with Definition 3.1.3
exhibit for the considered Jacobi structures with background

1
2

[Π,Π]+E∧Π = Π]φj+Π]
(
ωj ∧ Π[E

)
, [E,Π] = −

(
Π]iEφj + Π]

(
iEωj ∧ Π[E

))
, (3.73)

for j = 1, 2. By subtraction we get

Π]
(
φ+ ω ∧ Π[E

)
= 0, Π]iE

(
φ+ ω ∧ Π[E

)
= 0, (3.74)

where
φ := φ1 − φ2, ω := ω1 − ω2. (3.75)

Invoking the non-degeneracy of the 2-vector field Π, from (3.74) we infer φ = −ω ∧ Π[E,
hence (3.71).

In the transitive odd-dimensional situation, by using the same manipulations and the
same notations (3.75) as in the even-dimensional case, we get

Π]φ = −Π]ω ∧ E, Π]iEφ = −Π]iEω ∧ E. (3.76)

At this stage, in the light of Remark 3.4.3 (see (3.70)), relations (3.76) further impose

Π]iEω = 0, Π]ω = 0, Π]iEφ = 0, Π]φ = 0. (3.77)

The first equation in (3.77) shows that Im Π] ⊆ Ker iEω. This, combined with E ∈ Ker iEω,
in the light of the transitiveness of the considered pairs (see (3.68)), allows us to conclude
that iEω = 0, which together with Π]ω = 0, finally gives ω = 0.
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Now, by using the same arguments, we analyze the last two equations in (3.77)) and show
that their unique solution is the trivial one φ = 0. Let ρ and λ be two arbitrary 1-forms.
With these objects at hand, the third equation in (3.77) is equivalent to iΠ]ρ (iΠ]λiEφ) = 0.
This, together with the obvious one iE (iΠ]λiEφ) = 0, by means of the transitiveness (3.68),
exhibit iΠ]λiEφ = 0 for all λ ∈ Ω1(M), and, moreover iEφ = 0. Invoking again the transitive
character of the considered Jacobi structures with background, the last result together with
the fourth equation in (3.77) display φ = 0, which completes the proof in the odd-dimensional
context.

The results given by the previous theorem offer the gauge transformations [70] for a given
transitive Jacobi manifold with background, i.e. the changes of ω and φ that do not modify
the fundamental objects Π and E respectively. In this sense the transitive odd-dimensional
case is rigid. Thus for a twisted contact structure (θ, ω), which is known to be transitive
odd-dimensional, the background (ω, dω) cannot be altered.

3.4.3 Characterization of transitive Jacobi manifolds with back-
ground

The transitive twisted Poisson manifolds are twisted symplectic (alias almost symplectic)
manifolds [68]. The transitive twisted Jacobi manifolds are either twisted contact or twisted
locally conformal symplectic [64]. In the sequel, we shall characterize the transitive Jacobi
manifolds with background.

Theorem 3.4.6. Let (M, ((Π, E), (φ, ω))) be a Jacobi manifold with background. If it is tran-
sitive then either it is a locally conformal symplectic manifold with background (see section
4.2.3) or it is a twisted contact one (see section 3.1.4).

Proof. The argumentation takes into account the parity of the manifold M .
i) AssumingM is even-dimensional, from its transitivity we know that Π is non-degenerate,

so we define the non-degenerate 2-form Ω as its inverse

〈Ω, X ∧ Y 〉 :=
〈
Π[X ∧ Π[Y,Π

〉
, X, Y ∈ X1 (M) , (3.78)

and the 1-form α (the Lee 1-form) by

α := −iEΩ. (3.79)

At this stage we are in position to prove that the geometric objects defined in (3.79)–(3.78)
verify the relations (3.24) and (3.25). In view of this we compute the de Rham differential of
the 2-form Ω. Let f , g and h be three arbitrary smooth functions. By a direct computation
based on definition (3.78) we get〈

dΩ,Π]df ∧ Π]dg ∧ Π]dh
〉

=
∑
cyclic

(
Π]df

(〈
Ω,Π]dg ∧ Π]dh

〉)
−
〈
Ω,
[
Π]df,Π]dg

]
∧ Π]dh

〉)
= iΠ (df ∧ diΠ (dg ∧ dh))

−
∑
cyclic

((
Π]df

(
Π]dg (h)

)
− Π]dg

(
Π]df (h)

)))
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= −iΠdiΠ (df ∧ dg ∧ dh)

−
∑
cyclic

(
Π]df

(〈
dh,Π]dg

〉)
− Π]dg

(〈
dh,Π]df

〉))
= iΠdiΠ (df ∧ dg ∧ dh) = −1

2
i[Π,Π] (df ∧ dg ∧ dh) .

In the same fashion, we successively obtain〈
α ∧ Ω,Π]df ∧ Π]dg ∧ Π]dh

〉
=
∑
cyclic

〈
α,Π]df

〉 〈
Ω,Π]dg ∧ Π]dh

〉
= −

∑
cyclic

〈
df,Π]α

〉
iΠ (dg ∧ dh)

= −
∑
cyclic

iE (df) iΠ (dg ∧ dh) = −iE∧Π (df ∧ dg ∧ dh) .

Adding the last two results and using the first relation in (3.16) we get〈
dΩ + α ∧ Ω,Π]df ∧ Π]dg ∧ Π]dh

〉
= −

〈
df ∧ dg ∧ dh,Π]φ+ Π]ω ∧ E

〉
,

or, equivalently〈
dΩ + α ∧ (Ω− ω) ,Π]df ∧ Π]dg ∧ Π]dh

〉
= −

〈
df ∧ dg ∧ dh,Π]φ

〉
=
〈
φ,Π] (df ∧ dg ∧ dh)

〉
.

which proves (3.25).
It remains to prove the closedness of the Lee 1-form α, (3.24). In view of this, we use

its definition (3.79), relation (3.25) and the second equation in (3.16). By means of the first
two arguments above we establish

dα = −diEΩ = −LEΩ + iEdΩ = −LEΩ + iE [φ− α ∧ (Ω− ω)] . (3.80)

In the sequel, we compute the terms in the right hand side of (3.80). Let f and g be
two arbitrary smooth functions. By using the relation between Lie derivatives and tensor
contractions we get〈

LEΩ,Π]df ∧ Π]dg
〉

= LE
〈
Ω,Π]df ∧ Π]dg

〉
−
〈
Ω,
[
E,Π]df

]
∧ Π]dg

〉
+
〈
Ω,
[
E,Π]dg

]
∧ Π]df

〉
= −LEiΠ (df ∧ dg)

+ iΠLE (df ∧ dg) = −i[E,Π] (df ∧ dg) . (3.81)

Concerning the second term in the right hand side of (3.80), we subsequently obtain〈
iEφ,Π

]df ∧ Π]dg
〉

=
〈
df ∧ dg,Π]iEφ

〉
= iΠ]iEφ (df ∧ dg) . (3.82)

Moreover, by means of the definition (3.79) combined with the antisymmetry of the 2-vector
field Π we get iEα = Ω(E,E) = 0, result that further leads to〈

iE (α ∧ Ω) ,Π]df ∧ Π]dg
〉

= −
〈
α ∧ iEΩ,Π]df ∧ Π]dg

〉
= 0 (3.83)
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and 〈
iE (α ∧ ω) ,Π]df ∧ Π]dg

〉
= −

〈
α ∧ iEω,Π]df ∧ Π]dg

〉
= −

〈
α,Π]df

〉 〈
iEω,Π

]dg
〉

+ 〈α,Π]dg〉〈iEω,Π]df〉
= −(Ef)〈dg,Π]iEω〉+ (Eg)〈df,Π]iEω〉
= iΠ]iEω∧E (df ∧ dg) (3.84)

Inserting the relations (3.81), (3.82), (3.83) and (3.84) in the right hand side of the formula
(3.80) and invoking Definition 3.1.3 (see the second equation in (3.16)) we prove that dα = 0.

ii) We analyze the transitive Jacobi structures with background over odd-dimensional
manifolds. In this context, we prove that the considered Jacobi structure is a twisted contact
structure (see Section 3.1.4). In view of this, we start from Remark 3.4.3 and construct the
1-form θ such that

iEθ = 1, iΠ]λθ = 0, λ ∈ Ω1(M), (3.85)

where the second identity means Π]θ = 0. In order to show that (θ, ω) is a twisted contact
structure over the base manifold M , it is enough to prove that the 2-form dθ+ω verifies the
equations

iE(dθ + ω) = 0, iΠ]λ(dθ + ω) = iE (λ ∧ θ) , λ ∈ Ω1 (M) . (3.86)

Indeed, due to the fact that E and Π]λ generate the whole tangent space, the relations (3.85)
and (3.86) imply the non-degeneracy of the volume form (3.34) as

iEµ = −(dθ + ω)m, iΠ]λµ = −mλ ∧ θ ∧ (dθ + ω)m−1, dimM = 2m+ 1. (3.87)

We establish the first relation in (3.86) by computing iE(dθ + ω). Let λ be an arbitrary
1-form, λ ∈ Ω1(M). Starting with relations (3.85), we successively derive

iΠ]λiE(dθ + ω) = iE∧Π]λ(dθ + ω) = iE∧Π]λ (dθ + ω) =
〈
ω,E ∧ Π]λ

〉
+
〈
dθ, E ∧ Π]λ

〉
= −

〈
λ,Π]iEω

〉
〈θ, E〉+

〈
dθ, E ∧ Π]λ

〉
= −

〈
λ ∧ θ,Π]iEω ∧ E

〉
+
〈
dθ, E ∧ Π]λ

〉
. (3.88)

Invoking the second equation in (3.16) and the second relation in (3.85), direct computations
based on Koszul relation (3.26) further give

−
〈
λ ∧ θ,Π]iEω ∧ E

〉
=
〈
λ ∧ θ, [E,Π] + Π]iEφ

〉
= 〈λ ∧ θ, [E,Π]〉

= − [[iΠ, d] , iE] (λ ∧ θ) = iΠiE (λ ∧ dθ)− iΠd ((iEλ) θ)

= −iΠ]λiEdθ = −
〈
dθ, E ∧ Π]λ

〉
. (3.89)

Putting together (3.88) and (3.89) we conclude that

iΠ]λiE(dθ + ω) = 0, (3.90)

which, supplemented with iEiE(dθ + ω) = 0, prove the first relation in (3.86).
Using the same reasoning, we prove the second formula in (3.86). Firstly, by means of

the first relation in (3.86), we immediately deduce

iEiΠ]λ(dθ + ω) = −iΠ]λiE(dθ + ω) = 0 = iEiE (λ ∧ θ) , λ ∈ Ω1(M). (3.91)
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Next, we consider two arbitrary 1-forms ρ and λ and show that the second formula in
(3.86) also holds on the pair

(
Π]ρ,Π]λ

)
. Direct computations based on (3.85) display

iΠ]ρiΠ]λ(dθ + ω) = 〈dθ + ω,Π]λ ∧ Π]ρ〉 = 〈dθ,Π]λ ∧ Π]ρ〉+ 〈λ ∧ ρ,Π]ω〉
= 〈dθ,Π]λ ∧ Π]ρ〉+ 〈λ ∧ ρ,Π]ω〉〈θ, E〉
= 〈dθ,Π]λ ∧ Π]ρ〉+ 〈λ ∧ ρ ∧ θ,Π]ω ∧ E〉
= 〈dθ,Π]λ ∧ Π]ρ〉+ 〈λ ∧ ρ ∧ θ, 1

2
[Π,Π] + E ∧ Π− Π]φ〉

= 〈dθ,Π]λ ∧ Π]ρ〉+ 1
2
〈λ ∧ ρ ∧ θ, [Π,Π]〉+ 〈λ ∧ ρ,Π〉

= 〈dθ,Π]λ ∧ Π]ρ〉+ 1
2
i[Π,Π] (λ ∧ ρ ∧ θ) + iΠ (λ ∧ ρ) . (3.92)

The right hand side of (3.92) can be simplified via the Gelfand and Dorfman formula [29]:

1
2
i[Π,Π] (λ ∧ ρ ∧ θ) = 〈θ,

[
Π]λ,Π]ρ

]
〉 − 〈θ,Π] [λ, ρ]Π〉, (3.93)

for the Dorfman bracket

[λ, ρ]Π := LΠ]λρ− LΠ]ρλ− diΠ (λ ∧ ρ) .

Indeed, by using (3.93) together with the second equation in (3.85), which is equivalent to
Π]θ = 0, we get

1
2
i[Π,Π] (λ ∧ ρ ∧ θ) = 〈θ,

[
Π]λ,Π]ρ

]
〉 = −〈dθ,Π]λ ∧ Π]ρ〉. (3.94)

Inserting the result (3.94) into the right hand side of the equality (3.92) we obtain

iΠ]ρiΠ]λ(dθ + ω) = iΠ (λ ∧ ρ) (3.95)

Finally, equations (3.85) further imply that

iΠ]ρiE (λ ∧ θ) = −iEiΠ]ρ (λ ∧ θ) = −iE
((
iΠ]ρλ

)
θ
)

= −iΠ]ρλ = iΠ (λ ∧ ρ) ,

which, in the light of (3.95), allows to show that

iΠ]ρiΠ]λ(dθ + ω) = iΠ]ρiE (λ ∧ θ) . (3.96)

Putting together the results (3.91) and (3.96) we conclude that the second equation in (3.86)
also holds.

At this point we have all the tools to formulate the main result of this section.

Theorem 3.4.7. The characteristic distribution associated to a Jacobi manifold with back-
ground is completely integrable (in the sense of Stefan-Sussmann). Its characteristic leaves
are either locally conformal symplectic manifolds with background (if even dimensional) or
twisted contact manifolds (if odd dimensional).

Proof. The proof uses the involutivity of characteristic distribution (see Proposition 3.4.1)
combined with the fact that characteristic distribution possesses constant rank along the
flow lines of its sections (this is done in [42, Theorem 1]) and supplemented with the fact
that through each point of the smooth manifold M only one maximal integral submanifold
passes (this can be found in [64, Theorem 3.2]).
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Corollary 3.4.8. The pull-back of the background 3-form φ to an odd dimensional charac-
teristic leaf is always exact.

Proof. Let i : L ↪→ M be an odd-dimensional characteristic leaf, thus twisted contact (by
Theorem 3.4.7). In particular its background (i∗φ, i∗ω) has to satisfy i∗φ = di∗ω, so it is
exact.

3.5 Twisted dual pairs

The twisted version of a (symplectic) dual pair [82] has been studied in [37]. In this section
we give a twisted version (in the trivial line bundle setting) of a contact dual pair [73].

3.5.1 Twisted symplectic dual pairs

Let (M,Ω) be a twisted symplectic manifold (with 3-form φ = dΩ), and let (P1,Π1, φ1),
(P2,Π2, φ2) be two Poisson manifolds with background. A pair of Poisson maps

(M,Ω)
F1

xx

F2

&&
(P1,Π1, φ1) (P2,Π2, φ2)

(3.97)

is called a twisted symplectic dual pair [37] if kerTF1 and kerTF2 are orthogonal complements
of each other, with respect to the non-degenerate 2-form Ω.

The twisted symplectic groupoids [12] are examples of twisted symplectic dual pairs.

Remark 3.5.1. For all f1 ∈ F(P1) and f2 ∈ F(P2), we get commuting functions

{F ∗1 f1, F
∗
2 f2} = 0

for the bracket on F(M) induced by Ω. Indeed, the bracket can be written as

{F ∗1 f1, F
∗
2 f2} = iXF∗1 f1

d(F ∗2 f2),

but the Hamiltonian vector fields XF ∗1 f1
generate (kerTF1)⊥ = kerTF2, hence the vanishing

of the bracket.

Remark 3.5.2. Because of the relation (3.46) between the Jacobiator and the background
form, as in Remark 3.2.7 we obtain that the 3-forms F ∗i φi and φ = dΩ coincide on Π]((kerTFi)

◦) =
(kerTFi)

⊥, for i = 1, 2. From this, with the dual pair condition (kerTF1)⊥ = kerTF2, we
deduce a relation between the 3-forms on the three manifolds, namely

φ = dΩ = F ∗1 φ1 + F ∗2 φ2

on the integrable distribution

kerTF1 + kerTF2 = kerTFi + (kerTFi)
⊥, i = 1, 2.

Notice that the background 3-forms φ1, φ2 need not be exact or closed.
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Proposition 3.5.3. [37] If the Poisson maps in the twisted symplectic dual pair (3.97) are
surjective submersions (i.e. the dual pair is full) with connected fibers, then there is a one-
to-one correspondence between the characteristic (twisted symplectic) leaves of P1 and P2,
namely L2 = F2(F−1

1 (L1)) with inverse L1 = F1(F−1
2 (L2)).

3.5.2 Twisted contact dual pairs

We consider a twisted contact manifold (M, θ, ω), with non-degenerate 2-form Ω = dθ + ω
on the hyperplane distribution H = ker θ, as well as two Jacobi manifolds with background,
(P1, (Π1, E1), (φ1, ω1)) and (P2, (Π2, E2), (φ2, ω2)).

Definition 3.5.4. A pair of conformal Jacobi maps with conformal factors a1, a2 ∈ F(M),

(M, θ, ω)
F1

zz

F2

$$
P1 P2

(3.98)

is called a twisted contact dual pair if the following conditions hold:

1. H is transverse to both kerTF1 and kerTF2;

2. {a1, a2} = 0 and Xa1 ∈ Γ(kerTF2), Xa2 ∈ Γ(kerTF1);

3. the F1-vertical part H1 := kerTF1 ∩ H and the F2-vertical part H2 := kerTF2 ∩ H
of H are orthogonal complements of each other, i.e. H⊥1 = H2 with respect to the
non-degenerate 2-form Ω = dθ + ω on H.

The twisted contact dual pair is called full if the maps F1 and F2 are surjective submersions.

The twisted contact groupoids [65] are examples of full twisted contact dual pairs.

Remark 3.5.5. From the identity Π]((kerTF1)◦) = H⊥1 = H2 that follows from (3.39) and
3, we deduce that Π(dF ∗1 f1, dF

∗
2 f2) = 0 for all f1 ∈ F(P1) and f2 ∈ F(P2). Using also point

2 in the definition of a twisted contact dual pair, we conclude that

{a1F
∗
1 f1, a2F

∗
2 f2} = 0, f1 ∈ F(P1), f2 ∈ F(P2).

Given a surjective submersion F : M → P with connected fibers, the pullback of a
distribution C ⊆ TP is the distribution F ∗C ⊆ TM defined at each p ∈ M by (F ∗C)p :=
(TpF )−1(CF (p)). It is an integrable distribution, provided the distribution C is integrable.
From Appendix E in [10] we know that, with the additional assumption that the fibers are
connected, there is a one-to-one correspondence between leaves L of C and K of F ∗C, given
by

L 7→ K = F−1(L) and K 7→ L = F (K). (3.99)

Lemma 3.5.6. In a full twisted contact dual pair, the pullback of the characteristic distri-
butions C1 and C2 on the Jacobi manifolds P1 and P2 coincide. Moreover,

F ∗1 C1 = kerTF1 + kerTF2 = F ∗2 C2. (3.100)
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Proof. We compute the kernel of TF2 as

kerTF2
2.
= H2 + 〈Xa1〉

3.
= H⊥1 + 〈Xa1〉

(3.39)
= Π]((kerTF1)◦) + 〈Xa1〉. (3.101)

Its image under TF1 is the characteristic distribution C1 = Im Π1 + 〈E2〉, because by
Proposition 3.2.5 the vector fields Xa1 and E1, as well as the bi-vector fields a1Π and
Π1, are related by the map F1 which is conformal Jacobi with conformal factor a1. Thus
kerTF1 + kerTF2 = F ∗1 C1.

Remark 3.5.7. From (3.58) we deduce that dω = a1F
∗
1 φ1 + da1 ∧F ∗1ω1 and ω = a1F

∗
1ω1 on

the distribution

Π]((kerTF1)◦) + 〈Xa1〉
(3.101)

= kerTF2,

and similarly for the complementary indices. Thus, we get relations between the twisting
forms, namely

dω = a1F
∗
1 φ1 + da1 ∧ F ∗1ω1 + a2F

∗
2 φ2 + da2 ∧ F ∗2ω2, ω = a1F

∗
1ω1 + a2F

∗
2ω2,

when restricted to the integrable distribution kerTF1 + kerTF2.

Proposition 3.5.8. If the Poisson maps in the full twisted contact dual pair (3.98) have
connected fibers, then there is a one-to-one correspondence between the characteristic leaves
of P1 and P2, namely L2 = F2(F−1

1 (L1)) with inverse L1 = F1(F−1
2 (L2)).

Moreover, the odd dimensional (twisted contact) leaves are in correspondence to each
other, as well as the even dimensional (locally conformal symplectic with background) leaves.

The proof uses the fact that for full dual pairs (3.98) with dimM = 2m+ 1,

dimP1 + dimP2 = 2m. (3.102)

Indeed, let k1 := dim kerTF1 and k2 := dim kerTF2. Thus dimH1 = k1 − 1 and dimH2 =
k2 − 1 by the transversality conditions at point 1 in the contact dual pair definition. From
H⊥1 = H2 we get k1 +k2 = 2m+2, hence dimP1 +dimP2 = 2m+1−k1 +2m+1−k2 = 2m.

Proof. We know there is a one-to-one correspondence between leaves of Ci and F ∗i Ci given
by (3.99): Li 7→ F−1

i (Li) and K 7→ Fi(K), for i = 1, 2. Thus by (3.100) there is a one-to-one
correspondence between characteristic leaves of P1 and P2, namely L2 = F2(F−1

1 (L1)) with
inverse L1 = F1(F−1

2 (L2)).
Let d = dim(kerTF1∩kerTF2), so that dim(kerTF1+kerTF2) = k1+k2−d = 2m+2−d,

because of (3.102). Counting the dimensions in (3.100) one gets that k1 + dimL1 = 2m +
2− d = k2 + dimL2, thus codimL1 = 2m+ 1− k1− dimL1 = d− 1 is the same as codimL2.
But by (3.102) the dimensions of P1 and P2 have the same parity. Thus the dimensions of
the leaves L1 and L2 also have the same parity.

The ”Poissonization” procedure from Section 3.3 can be applied to all the objects involved
in a twisted contact dual pair.
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Proposition 3.5.9. Given a twisted contact dual pair (3.98), the pair of Poisson maps

(M × R, Ω̃)
F̃1

vv

F̃2

((

(P1 × R, Π̃1, φ̃1) (P2 × R, Π̃2, φ̃2)

(3.103)

forms a homogeneous twisted symplectic dual pair.

Proof. We verify that the twisted symplectic dual pair condition

kerT F̃1 = (kerT F̃2)⊥

with respect to the non-degenerate 2-form Ω̃ = eτ (dθ + ω − dτ ∧ θ) obtained by the ”sym-
plectization” of the twisted contact structure (θ, ω) (3.65). First we notice that the kernel
of the Poisson map F̃i is

kerT F̃i = {(−a−1
i dai(X), X)|X ∈ kerTFi} (3.104)

For the inclusion kerT F̃1 ⊆ (kerT F̃2)⊥, we choose arbitrary vectors X ∈ kerTF1 and
Y ∈ kerTF2. Let us denote HX = X − a−1

2 θ(X)Xa2 ∈ H1 and HY = Y − a−1
1 θ(Y )Xa1 ∈ H2,

and we compute:

Ω̃((−a−1
1 da1(X), X), (−a−1

2 da2(Y ), Y ))
(3.65)
= (dθ + ω)(X, Y ) + θ(X)a−1

2 da2(Y )

− θ(Y )a−1
1 da1(X) = (dθ + ω)(HX , HY )

+ a−1
1 a−1

2 θ(X)θ(Y )(dθ + ω)(Xa2 , Xa1)

+ a−1
2 θ(X)((dθ + ω)(Xa2 , HY ) + da2(Y ))

− a−1
1 θ(Y )((dθ + ω)(Xa1 , HX) + da1(X))

(3.37)
= (dθ + ω)(HX , HY ) + a−1

1 a−1
2 θ(X)θ(Y )(−Π(da1, da2)

+ da2(Xa1)− da1(Xa2))
(3.44)
= (dθ + ω)(HX , HY )

+ a−1
1 a−1

2 θ(X)θ(Y )(Π(da1, da2) + iE(a1da2 − a2da1))

(3.43)
= (dθ + ω)(HX , HY ) + a−1

1 a−1
2 θ(X)θ(Y ){a1, a2} = 0,

expression that vanishes because of points 2 and 3 in the twisted contact dual pair definition.
The reverse inclusion follows from a dimension count:

dim kerT F̃1 + dim kerT F̃2 = dim kerTF1 + dim kerTF2 = k1 + k2 = 2m+ 2 = dim(M ×R).
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Chapter 4

Jacobi bundles with background

In the early ’70s it was invented a new geometric concept [42] that puts on equal footing
locally conformal symplectic and contact structures. This assumes a vector bundle, (E →M)
and a local Lie algebra structure over the R-vector space of smooth sections, Γ(E). In
appropriate circumstances (precisely, when the vector bundle reduces to the trivial line
bundle RM → M), this geometric structure gives rise the well-known Jacobi manifold [33,
46, 24]. Globally, the Jacobi manifold was initially defined via a pair (lately addressed [73]
as the Jacobi pair) consisting of a 2-vector and a vector field subject to two consistency
conditions that make use of the Schouten bracket associated with the Gerstenhaber a1gebra
of multi-vector fields. These conditions can be reformulated in terms of a Maurer-Cartan
equation [62, 73] related to the Gerstenhaber-Jacobi algebra structure over the set of the first-
order multi-derivations of the trivial line bundle, which shows that Jacobi pair generalizes in
some sense Poisson structure. Also, the Jacobi pair organizes the R-vector space of smooth
functions as a Lie algebra (with respect to the well-known Jacobi bracket) but not a Poisson
one.

It is worth mentioning that the previous structure, via the associated Jacobi bracket, has
recently found many applications in mathematical physics, namely in the canonical approach
of non-autonomous Hamiltonian systems [81, 76], in the integrability of Hamiltonian systems
on odd-dimensional manifolds [77, 78, 45], in the construction of Jacobi Sigma Models [4] as
well as in the geometric reformulation of non-equilibrium thermodynamics [5].

A straightforward generalization of the Jacobi pair comes from its ‘twist’ [62] (at the
level of the Jacobi identity for the associated Jacobi bracket) by a 2-form and its de Rham
differential. Twisted Jacobi manifolds (manifolds equipped with twisted Jacobi pairs) enjoy
the main features of Jacobi manifolds: i) their characteristic distributions are completely
integrable, with twisted cooriented contact structures on the odd-dimensional leaves and
twisted locally conformal symplectic structures on the even-dimensional leaves [64] and ii)
they are in one-to-one correspondence with homogeneous twisted Poisson manifolds, where
the background 3-form is exact [62].

In the previous chapter, we showed that the twisted Jacobi pair concept is encompassed by
the Jacobi pair with background. As for any Jacobi-like pair, this starts with a pair consisting
of a 2-vector and a vector field and adds a ‘background’ (that spoils the Jacobi identity for
the Jacobi bracket) comprising a 3-form together with a 2-form. If in a Jacobi pair with
background, the 3-form reduces to the de Rham differential of the 2-form, then this reduces

73
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to a twisted Jacobi pair. In addition, Jacobi manifolds with background (those equipped
with Jacobi pairs with background) enjoys the main features of the Jacobi and twisted
Jacobi manifolds, i.e. i) their characteristic distributions are completely integrable, with
twisted cooriented contact structures on the odd-dimensional leaves and locally conformal
symplectic structures with background on the even-dimensional leaves [16] and ii) they are
in one-to-one correspondence with homogeneous Poisson manifolds with background, where
the background 3-form is no longer closed [16]. At this point, it is worth noticing the very
recent interest in physics for Poisson Sigma Models with non-closed background 3-form and
their relation with twisted Jacobi Sigma Models [13].

Recently, employing the Gerstenhaber-Jacobi algebra structure of the multi-derivations
of the trivial line bundle, it has been shown that the consistency conditions correspond-
ing to various Jacobi-like pairs [73, 62, 16] can be compactly written as Maurer-Cartan-like
equations. These results together with the algebraic characterisations of Lie and Jacobi alge-
broids [31, 32] allow the introduction of the line-bundle versions encompassing the previous
‘pairs’. Within this global setting, the ‘pairs’ are nothing but the trivial line-bundle versions
of the corresponding Jacobi-like bundles [56, 73]. Starting from this remark, the aim of this
chapter consists of the analysis of twisted Jacobi and Jacobi bundles with background. The
analysis will follow the strategy in [73, 79] and will be mainly focused on the integrability
of the characteristic distributions corresponding to twisted Jacobi and Jacobi bundles with
background.

The present chapter is organized into four sections as follows. Section 1 is dedicated to
standard characterizations [31, 32] of Lie and Jacobi algebroids. Unavoidable, this includes
the Atiyah algebroid of the derivations of a line bundle [43]. For connecting the line-bundle
formulations of the analyzed Jacobi bundles with the ‘pairs’, the previously mentioned results
are done also in the trivial line bundle context [73]. For self-consistency reasons, in Section 2
we shortly address the Jacobi bundles [56] and their characteristic distributions integrability
[23, 73]. Section 3 is dedicated to twisted Jacobi bundles. In the literature, this has been
previously done only in the context of the trivial line bundle, i.e., in our language, twisted
Jacobi pairs. Here, we collect the main results concerning transitive twisted Jacobi bundles
and the integrability of twisted Jacobi bundles. Section 4 is dedicated to the main aim of the
present chapter, namely Jacobi bundles with background. With the preparations made in
Secs. 1–3 of the present chapter, it is shown that the trivial line bundle version of a Jacobi
bundle with background is nothing but a Jacobi pair with background. Then, the analysis
of transitive Jacobi bundles with background allows us to conclude that they are equivalent
to either a locally conformal symplectic structure with background or a twisted conformal
structure. Finally, by using the fact that locally, any Jacobi bundle with background is
equivalent to a Jacobi pair with background, we sketch the proof of integrability of the
characteristic distribution associated with a Jacobi bundles with background.

The original results contained in the present chapter are based on [16, 19, 20].

4.1 Lie and Jacobi algebroids: A brief review

Since the ‘birth’ of the local Lie algebras [42], it has been clear that they should be somehow
connected with already known Lie algebroids [66]. This connection is pointed out by the
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bracket among sections in the vector bundle enjoying the locality (i.e. the bracket does
not increase the support of its factors). In fact, Lie algebroids, introduced in the 1960s by
Pradines [66], represent the natural framework for Jacobi and Jacobi-like bundles. In this
section, we initially collect some results [31, 32] concerning the algebraic characterization of
Lie algebroids through either a Gerstenhaber algebra or a differential complex (de Rham).
Then, with the help of a derivative representation (on a line bundle) [43] of a given Lie
algebroid, we implement and algebraically reformulate [31, 32, 73] the concept of Jacobi
algebroid. Due to the fact that we are to prove that Jacobi-like pairs are nothing but
Jacobi-like trivial line bundles, we focus a little bit on Jacobi algebroids over trivial line
bundles.

By its very definition, a Lie algebroid is a vector bundle A → M equipped with a Lie
algebra structure on the set of its smooth sections, Γ (A), which in turn, is endowed with a
vector bundle map (the well-known anchor), ρ : A→ TM , that is a Lie algebra morphism

ρ ([α, β]) = [ρ (α) , ρ (β)] , α, β ∈ Γ (A) , (4.1)

which is a first-order differential operator in each factor

[α, fβ] = (ρ (α) f) β + f [α, β] , α, β ∈ Γ (A) , f ∈ F (M) . (4.2)

As we have specified in the beginning of this work, we denote by F(M) the associative,
commutative, and unital algebra of real smooth functions on the smooth manifold M . A
given Lie algebroid structure on A → M can be agebraically reformulated [31, 32, 73] as
follows.

Theorem 4.1.1. Let A→M be a vector bundle. Then, the following data are equivalent:

1. a Lie algebroid structure, ([•, •] , ρ), on A→M ;

2. a Gerstenhaber algebra structure, [•, •]A, on the graded algebra A •A := Γ (∧•A);

3. a homological degree 1 graded derivation, dA, acting on the graded algebra Ã •A :=
Γ (∧•A∗).

Because the graded algebra A •A is generated by its zeroth and first-degree components,
it results that the one-to-one correspondence between Gerstenhaber and Lie algebroid struc-
tures reduces to

[α, f ]A = ρ (α) f, [α, β]A = [α, β] , α, β ∈ Γ (A) , f ∈ F (M) . (4.3)

Invoking the generating system of the graded algebra Ã •A and the natural pairing between
Ã •A and A •A (see Chapter 1), the one-to-one correspondence between the Lie algebroid
structure and the homological derivation is captured by

〈dAf, α〉 = ρ (α) f, 〈dAθ̃, α ∧ β〉 = ρ (α) 〈θ, β〉 − ρ (β) 〈θ, α〉 − 〈θ, [α, β]〉, (4.4)

for arbitrary f ∈ F(M), θ̃ ∈ Ã 1
A and α, β ∈ Γ(A).
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It is noteworthy that the homological derivation dA defined in (4.4) is nothing but de
Rham differential associated with Gerstenhaber structure [•, •]A

〈dAω̃, α0 ∧ · · · ∧ αp〉 =

p∑
j=0

(−)j ρ (αj) 〈ω̃, α0 ∧ · · ·
j
∧ · · · ∧ αp〉

+
∑

0≤i<j≤p

(−)i+j 〈ω̃, [αi, αj] ∧ α0 ∧ · · ·
i
∧ · · ·

j
∧ · · · ∧ αp〉, (4.5)

where by the symbol
i
∧, we meant the omission of the factor αi in the product α0 ∧ · · · ∧αp.

With these specifications at hand, the Cartan calculus is ready. Indeed, if we denote by i
(A)
α

the inner derivation in the algebra Ã •A,

i(A)
α f := 0, i(A)

α ω̃ := 〈ω̃, α〉, f ∈ Ã0
A, ω̃ ∈ Ã1

A

and by L(A)
α the Lie derivative

L(A)
α f =: [α, f ]A , 〈L(A)

α ω̃, β〉 := L(A)
α 〈ω̃, β〉 − 〈ω̃, [α, β]A〉, f ∈ Ã0

A, ω̃ ∈ Ã1
A, β ∈ Γ(A)

then
L(A)
α = i(A)

α dA + dAi
(A)
α .

The Cartan calculus is completed by the graded commutation relations

[dA, dA] =
[
dA,L(A)

α

]
=
[
i(A)
α , i

(A)
β

]
= 0,[

L(A)
α ,L(A)

β

]
= L(A)

[α,β],
[
L(A)
α , i

(A)
β

]
= i

(A)
[α,β],

Remember here that a Lie algebroid (A→M,ρ, [•, •]) is said to be transitive if its anchor
is surjective, i.e.

Im ρ = TM.

Throughout this paper, a key Lie algebroid appears, namely the Lie algebroid of the
derivations [43], also known as the Lie algebroid of covariant differential operators [53]. Let
E → M be a vector bundle. There exists the vector bundle DE → M [73] whose the fiber
at x ∈M , (DE)x, consists in R-linear operators

δ : Γ (E)→ Ex, (4.6)

which enjoy the existence of tangent vector ξ ∈ TxM such that

δ (fα) = (ξf)α (x) + f (x) δα, α ∈ Γ (E) , f ∈ F (M) . (4.7)

From the definition in the above, it is clear that property (4.7) guarantees the uniqueness
of the tangent vector ξ which is the well-known symbol of the operator δ, σδ := ξ. The
module of sections in the vector bundle DE → M , Γ (DE), coincides with the module of
the derivations [43] in the vector bundle E →M

Γ (DE) ≡ D (E) . (4.8)
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Remember here that an element from the F(M)-module D (E) is an R-linear map ∆ :
Γ (E)→ Γ (E), covering the derivation X∆ in the algebra F(M), X∆ ∈ X1 (M), i.e.

∆ (fα) = (X∆f)α + f∆α, α ∈ Γ (E) , f ∈ F (M) . (4.9)

Identification (4.8) exhibits the Lie algebroid structure on DE →M , ([•, •]DE , ρDE), where

[∆,∆′]DE := ∆∆′ −∆′∆, ρDE (∆) := X∆, ∆,∆′ ∈ D (E) , (4.10)

which is nothing but the well-known Atiyah algebroid associated with the vector bundle
E →M [43, 73].

In the last part of this section, we focus on Jacobi algebroids, which appear naturally by
‘enriching’ Lie algebroids with supplementary data and represent the proper framework for
Jacobi-like bundles. This starts with the concept of A-connection on vector bundles [43].

Definition 4.1.2. Let ([•, •] , ρ) be a Lie algebroid structure on the vector bundle A → M
and E →M be another vector bundle. A vector bundle morphism

∇ : A→ DE (4.11)

which enjoys the property
ρDE ◦ ∇ = ρ (4.12)

is said to be an A-connection on the vector bundle E → M . In addition, the connection ∇
is said to be flat if its curvature is trivial i.e.

R∇ (α, β) := [∇α,∇β]DE −∇[α,β] = 0, α, β ∈ Γ (A) . (4.13)

A flat A-connection is known as a representation of the Lie algebroid A on the vector bundle
E →M [43].

It is noteworthy that, if in the previous definition, we consider A = TM , i.e., the tangent
Lie algebroid then a flat connection ∇ on the vector bundle E → M equips DE with a
trivial Lie algebroid structure [43] as

DE = TM ⊕ (E∗ ⊗ E).

Definition 4.1.3. Let (A,L) be a pair consisting of a vector bundle A → M and a line
bundle L → M . A triplet ([•, •] , ρ,∇), where ([•, •] , ρ) is a Lie algebroid structure on the
vector bundle A → M and ∇ is a flat A-connection on the line bundle L → M , is called a
Jacobi algebroid structure [73, 32].

Following Theorem 4.1.1, similar algebraic characterizations can also be done for Jacobi
algebroid structures [73, 32].

Theorem 4.1.4. Let (A,L) be a pair consisting in a vector bundle A → M and a line
bundle L → M . Denoting by AL := A ⊗ L∗ the total space of the vector bundle A ⊗M L∗,
the following data are equivalent:

1. a Jacobi algebroid structure, ([•, •] , ρ,∇), on the pair (A,L);
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2. a Gerstenhaber-Jacobi algebra structure,
(

[•, •]A,L , X
(A,L)
•

)
, on the graded module L •A,L :=

Γ (∧•AL ⊗ L) [1] over the graded algebra A •A,L := Γ (∧•AL);

3. a homological degree 1 graded derivation, dA,L covering dA, acting on the graded Ã •A-
module L̃ •A,L := Γ (∧•A∗ ⊗ L).

Remember here that a Gerstenhaber-Jacobi structure consists of the following data:

� a graded moduleM over an associative, unital, graded commutative and graded alge-
bra A;

� a degree zero bracket [·, ·]M on M that organizes M as an graded R-Lie algebra;

� a degree zero graded R-Lie algebra map X(M) :M→ Der(A);

� the bracket [·, ·]M is a bi-differential operator in its arguments

[m, a · n] = (X(A)
m a) · n+ (−)|m|·|a|a · [m,n] .

In the second statement of Theorem 4.1.4, the argument 1 means that the gradation in
the module Γ (∧•AL ⊗ L) [1], ‖ • ‖, comes from the natural one in Γ (∧•AL ⊗ L), | • |, by
shifting it with one unit, ‖ • ‖ = | • | − 1, i.e.

A •A,L = A0
A,L ⊕A1

A,L ⊕A2
A,L ⊕ · · · := F (M)⊕ Γ (AL)⊕ Γ

(
∧2AL

)
⊕ · · · ,

L •A,L = L−1
A,L ⊕ L

0
A,L ⊕ L1

A,L ⊕ · · · := Γ(L)⊕ Γ (AL ⊗ L)⊕ Γ
(
∧2AL ⊗ L

)
⊕ · · · .

The natural pairing between L and L∗ exhibits the isomorphism

L0
A,L := Γ (AL ⊗ L) = Γ(A),

which allows to display the one-to-one correspondence between the Gerstenhaber-Jacobi
algebra and the Jacobi algebroid structures

[α, β]A,L = [α, β] , X(A,L)
α f = ρ (α) f, [α, e]A,L = ∇αe, (4.14)

with
α, β ∈ Γ (A) , f ∈ F (M) , e ∈ Γ (L) .

In order to synthesize the one-to-one relation between Jacobi algebroid structures and
homological degree 1 derivations, we use again the natural pairing between L and L∗ and
interpret the degree k homogeneous elements in the graded algebra Ã •A, ω̃ ∈ Ã k

A, as the
skew-symmetric and multi-linear applications

ω̃ : Γ (A)× · · · × Γ (A)→ F (M) , ω̃ (α1, . . . , αk) := 〈ω̃, α1 ∧ · · · ∧ αk〉.

Invoking the same argument, the degree k homogeneous elements in the graded module
L̃ •A,L, ω ∈ L̃ k

A,L, are the skew-symmetric and multi-linear applications

ω : Γ (A)× · · · × Γ (A)→ Γ (L) , ω (α1, . . . , αk) := 〈ω, α1 ∧ · · · ∧ αk〉.
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From this perspective, the Ã •A-module structure of the R-vector space L̃ •A,L reads

〈ω̃ ∧ ω, α1 ∧ · · · ∧ αk+l〉 :=
∑

σ∈S(k,l)

(−)σ 〈ω̃, ασ(1) ∧ · · · ∧ ασ(k)〉〈ω, ασ(k+1) ∧ · · · ∧ ασ(k+l)〉,

where S (k, l) is the subset of (k, l) un-shuffle permutations in S (k + l) i.e. those permuta-
tions σ that enjoy of σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + l).

With these preparations at hand, the one-to-one correspondence between Jacobi algebroid
structures and homological degree 1 derivations specified in the previous theorem simply
reads

(dA,Le) (α) = ∇αe, α ∈ Γ (A) , e ∈ Γ (L) , (4.15)

dA,L (ω̃ ∧ ω) = (dAω̃) ∧ ω + (−)k ω̃ ∧ dA,Lω, ω̃ ∈ ÃkA, ω ∈ L̃ •A,L (4.16)

where the symbol dA is related with the Lie algebroid structure on A→M via (4.5).
It is noteworthy that the homological degree 1 derivation dA,L allows the Cartan calculus

on the Ã •A-module L̃ •A,L. Indeed, for any α ∈ Γ(A), we define the degree −1 derivation ι
(A,L)
α

covering i
(A)
α , ι

(A,L)
α : L̃ •A,L → L̃ •A,L, via

ι(A,L)
α e := 0, ι(A,L)

α (ω̃ ⊗ e) := 〈ω̃, α〉e, ω̃ ∈ Γ(A∗), e ∈ Γ(L).

Also, the degree 0 derivation L(A,L)
α covering L(A)

α , L(A,L)
α : L̃ •A,L → L̃ •A,L, is available

L(A,L)
α e := ∇αe, L(A,L)

α (ω̃ ⊗ e) :=
(
L(A)
α ω̃

)
⊗ e+ ω̃ ⊗∇αe, ω̃ ∈ Γ(A∗), e ∈ Γ(L).

The previous derivations enjoy

L(A,L)
α = ι(A,L)

α dA,L + dA,Lι
(A,L)
α

together with the commutation relations

[dA,L, dA,L] =
[
dA,L,L(A,L)

α

]
=
[
ι(A,L)
α , ι

(A,L)
β

]
= 0,[

L(A,L)
α ,L(A,L)

β

]
= L(A,L)

[α,β]A
,
[
L(A,L)
α , ι

(A,L)
β

]
= ι

(A,L)
[α,β]A

,

specific to Cartan calculus. Previously, by [•, •] we understood the graded commutator
between various R-linear maps.

Remark 4.1.5. The definition of Jacobi algebroid structure ([•, •] , ρ,∇) when the line bun-
dle is trivial

L = RM := R×M (4.17)

reduces to that of a Lie algebroid structure ([•, •] , ρ) with a 1-cocycle [39]. Indeed, the trivial
line bundle (4.17) displays [43]

Γ (RM) = F (M) , D (RM) = X1 (M)⊕F (M) , (4.18)
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which further exhibits a 1-form ω∇ ∈ Γ(A∗) that enjoys

∇α = ρ (α) + 〈ω∇, α〉, α ∈ Γ (A) . (4.19)

Moreover, the flatness of A-connection (4.19) is equivalent

dAω∇ = 0. (4.20)

In the same context (4.17), the graded algebra A •A,L and the graded module L •A,L become

A •A,L = A •A := Γ (∧•A) , L •A,L = A •A [1] , (4.21)

while the Gerstenhaber-Jacobi algebra structure
(

[•, •]A,L , X
(A,L)
•

)
reduces to

(
[•, •]∇A , X∇•

)
,

where

[α, f ]∇A = ∇αf, [α, β]∇A = [α, β] , X∇α f = ρ(α)f, α, β ∈ Γ (A) , f ∈ F (M) . (4.22)

Finally, the Ã •A := Γ (∧•A∗)-module L̃ •A,L := Γ (∧•A∗ ⊗ L) reads

L̃ •A,L = Ã •A, (4.23)

while the homological derivation dA,L (covering dA) becomes d∇A

d∇Aω = dAω + ω∇ ∧ ω. (4.24)

By direct computation it can be proved that homological derivation (4.24) coincides with de
Rham differential associated with graded Lie algebra structure (4.21) i.e.

〈d∇Aω, α0 ∧ · · · ∧ αp〉 =

p∑
j=0

(−)j
[
αj, 〈ω, α0 ∧ · · ·

j
∧ · · ·αp〉

]∇
A

+
∑

0≤i<j≤p

(−)i+j 〈ω, [αi, αj]∇A ∧ α0 ∧ · · ·
i
∧ · · ·

j
∧ · · · ∧ αp〉. (4.25)

Let L→M be a line bundle. The pair (DL,L) can be naturally endowed with a Jacobi
algebroid structure associated with the standard Lie algebroid one (4.10) supplemented with
the tautological representation of DL→M on the line bundle L→M ,

∇ : DL→ DL, ∇�e := �e, � ∈ D (L) , e ∈ Γ (L) . (4.26)

According to Theorem 4.1.4, if we adopt the notations

[•, •] := [•, •]DL , σ := ρDL, (4.27)

the Jacobi algebroid structure ([•, •] , σ,∇) is equivalent to the Gerstenhaber-Jacobi alge-

bra one
(

[•, •] := [•, •]DL,L, X• := X
(DL,L)
•

)
, on the graded A •DL,L := Γ (∧•DLL)-module

L •DL,L := Γ (∧•DLL ⊗ L) [1].
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At this stage, it is useful to express the previous abstract Gerstenhaber-Jacobi algebra
in a more convenient form that allows computations. This assumes both the realization of
the algebra A •DL,L and of the R-vector space L •DL,L. In view of this, we make use of the
isomorphism [59] of F (M)-modules

Γ
((
J1L

)∗ ⊗ L) ' Γ (DL) := D (L) . (4.28)

At the level of vector bundles, (4.28) is equivalent to the isomorphism(
J1L

)∗ ⊗ L ' DL,

which, in the light of the natural pairing between L and L∗, further displays

DLL := DL⊗ L∗ ' J1L :=
(
J1L

)∗
. (4.29)

It has been shown [59] that if {El →M : l = 1, p} and F →M are some vector bundles
over the same manifold, then there exists the isomorphism of F(M)-modules

Γ(JkE1 ⊗ · · · JkEp ⊗ F ) ' Diffk(E1, · · · , Ep;F ), (4.30)

where JkE is the dual of the k-th order jet bundle, JkE = (JkE)∗ and Diffk(E1, · · · , Ep;F )
is the set of k-th order differential operators in each entry

D : Γ(E1)× · · · × Γ(Ep)→ Γ(F )

Putting together results (4.29) and (4.30), we display the realization that we are looking for

Γ (∧•J1L) ' Diff •1 (L;RM) , (4.31)

that further exhibits

A •DL,L ' Diff •1 (L;RM)⇔ AkDL,L ' Diffk1 (L;RM) , k ∈ N. (4.32)

Previously, Diff k
1 (L;RM) consists in the R multi-linear applications

�̃ : Γ (L)× · · · × Γ (L)→ F (M) , �̃ (e1, . . . , ek) ∈ F (M) , (4.33)

that are skew-symmetric and first-order differential operators in each argument. The product
in the graded algebra Diff •1 (L;RM) is nothing but the exterior one(

�̃ ∧ 4̃
)

(e1, . . . , ek+l) =
∑

σ∈S(k,l)

(−)σ �̃
(
eσ(1), . . . , eσ(k)

)
4̃
(
eσ(k+1), . . . , eσ(k+l)

)
,

for arbitrary homogeneous elements �̃ ∈ Diff k
1 (L;RM) and 4̃ ∈ Diff l

1 (L;RM). Previously,
we denoted by S (k, l) the subset of (k, l) un-shuffle permutations in S (k + l).

Concerning the realization of the R-vector space L •DL,L, by considering the tensor product
of the isomorphism (4.32) with the module Γ(L), one immediately gets

L •DL,L ' D•L [1] := Diff •1 (L;L) [1]⇔ LkDL,L ' Dk+1L, k ≥ −1 (4.34)
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where Dk+1L consists in the R-multi-linear applications

� : Γ(L)× · · · × Γ(L)→ Γ(L), � (e1, . . . , ek+1) ∈ Γ(L), (4.35)

that are skew-symmetric and first-order differential operators in each argument.
At this stage, the left action of the graded algebra Diff •1 (L;RM) on the R-vector space

D•L is nothing but the wedge product(
4̃ ∧�

)
(e1, . . . , ek+l+1) =

∑
σ∈S(k,l+1)

(−)σ 4̃
(
eσ(1), . . . , eσ(k)

)
�
(
eσ(k+1), . . . , eσ(k+l+1)

)
,

where 4̃ ∈ Diff k
1 (L;RM) and � ∈ Dl+1L are arbitrary homogeneous elements. More-

over, the pair (Diff •1 (L;RM) ,D•L) has a natural Gerstenhaber-Jacobi algebra structure
([[•, •]],X•) as follows. The graded Lie algebra structure on D•L, [[•, •]], can be written in
terms of the Gerstenhaber inner multiplication [32]

� ◦ 4 (e1, . . . , ek+l+1) :=
∑

σ∈S(l+1,k)

(−)σ�
(
4
(
eσ(1), . . . , eσ(l+1)

)
, eσ(l+2), . . . , eσ(k+l+1)

)
as

[[�,4]] := (−)kl� ◦ 4 −4 ◦�, � ∈ Dk+1L,4 ∈ Dl+1L. (4.36)

In order to introduce the derivative representation of the module D•L on the graded algebra
Diff •1 (L;RM), X•, we define the symbol map

σ� (f) (e1, . . . , ek) e := � (fe, e1, . . . , ek)− f� (e, e1, . . . , ek) , (4.37)

where
� ∈ Dk+1L, f ∈ F (M) , e, e1, . . . , ek ∈ Γ (L) .

It is noteworthy that, in the light of the pairing between L and L∗, the symbol
σ� (f) (e1, . . . , ek) is just a smooth function on the manifold M

σ� (f) (e1, . . . , ek) ∈ Γ (L∗ ⊗ L) ' F (M) ,

and moreover σ� (f) ∈ Diff k
1 (L;RM). With these specifications at hand, the derivative

representation reads

X�

(
4̃
)

(e1, . . . , ek+l) = (−)k(l−1)
∑

σ∈S(l,k)

(−)σ σ�

(
4̃
(
eσ(1), . . . , eσ(l)

)) (
eσ(l+1), . . . , eσ(l+k)

)
−

∑
σ∈S(k+1,l−1)

(−)σ 4̃
(
�
(
eσ(1), . . . , eσ(k+1)

)
, eσ(k+2), . . . , eσ(k+l)

)
. (4.38)

Finally, in the same context of the pair (DL,L), Theorem 4.1.4 offers the equivalence
between the Lie algebroid structure ([•, •] , σ,∇) and the homological degree 1 graded deriva-
tion, dL := dDL,L covering dDL, acting on the graded Ã •DL := Γ (∧• (DL)∗)-module Ω •L :=
L̃ •DL,L := Γ (∧• (DL)∗ ⊗ L). In literature [67], de Rham complex (Ω •L, dL) is known as der-
complex associated with the line bundle L→M and, meanwhile, the homogeneous elements
of the module Ω •L are called L-valued Atiyah forms. Regarding the homological derivation



4.1. LIE AND JACOBI ALGEBROIDS: A BRIEF REVIEW 83

dL, by means of the general results (4.15)–(4.16), it acts on the homogeneous elements of
the der-complex via

〈dLe,�〉 := �e, e ∈ Γ (L) ,� ∈ D (L) , (4.39)

dL (ω̃ ∧ ω) = dDLω̃ ∧ ω + (−)k ω̃ ∧ dLω, ω̃ ∈ Ã k
DL, ω ∈ Ω •L. (4.40)

Remark 4.1.6. The homological derivation enjoys two strong properties: i) it agrees with
the first-order prolongation and ii) it is acyclic.
i) Indeed, the isomorphism (4.28) with the concrete expression

I : Γ
((
J1L

)∗ ⊗ L)→ D (L) , (Iϕ) e := ϕ
(
j1e
)
,

where j1 : Γ (L) → Γ (J1L) is the first-order prolongation [69], furnishes the L-pairing
between DL and J1L expressed by the bi-linear non-degenerate map

〈•, •〉 : D(L)× Γ(J1L)→ Γ(L), 〈�, j1e〉 := �e, (4.41)

which is well-defined as the F(M)-module Γ(J1L) is generated [69] by Im j1. In the light of
(4.41) it results that

〈dLe,�〉 = 〈�, j1e〉.
ii) The acyclicity [67] of the homological derivation dL is done by the existence of a contract-
ing homotopy for idΩ •L

with respect to dL. Indeed, by direct computation it can be shown that
the Lie derivative associated with the first-order differential operator

1 ∈ D(L), 1e := e, e ∈ Γ(L),

L(DL,L)
1

reduces to idΩ •L
which means that

ι
(DL,L)
1

dL + dLι
(DL,L)
1

= idΩ •L
. (4.42)

Remark 4.1.7. When we consider the trivial line bundle (4.17) then, using the outputs
(4.1), it results that the pair (DRM ,RM) is nothing but (TM ⊕ RM ,RM). In this case, the
Jacobi algebroid structure (4.26)–(4.27) reduces to

[(X, f) , (Y, g)] = ([X, Y ] , Xg − Y f) , (X, f) , (Y, g) ∈ X1 (M)⊕F (M) , (4.43)

σ ((X, f)) = X, (X, f) ∈ X1 (M)⊕F (M) , (4.44)

∇(X,f)h = Xh+ fh, (X, f) ∈ X1 (M)⊕F (M) , h ∈ F (M) . (4.45)

Comparing expression (4.45) with the 1-cocycle given by Remark 4.1.5 it results that

ω∇ = (0, 1) ∈ Γ ((TM ⊕ R)∗) = Ω1(M)⊕F(M). (4.46)

According to point 2 in Theorem 4.1.4, the previous Jacobi algebroid structure ([•, •] , σ,∇)
over the pair (DRM ,RM) is equivalent to a Gerstenhaber-Jacobi structure over the
Diff •1 (RM ;RM)-module Diff •1 (RM ;RM) (see realizations (4.32) and (4.34)). Moreover, the
graded algebra of multi-derivations Diff •1 (RM ;RM) admits the realization

Xk (M)⊕ Xk−1 (M) ' Diff k
1 (RM ;RM) , (P,Q)←→ P −Q ∧ id, (4.47)
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where

(P −Q ∧ id) (f1, . . . , fk) := P (f1, . . . , fk)−
k∑
j=1

(−)k−j Q
(
f1, . . . , f̂j, . . . , fk

)
fj. (4.48)

The Gerstenhaber-Jacobi structure [62]
(

[[•, •]](0,1),X(0,1)
•

)
consists in

[[P −Q ∧ id, R− S ∧ id]](0,1) = [P,R]− p (−)r P ∧ S + rQ ∧R
− ([P, S] + (−)r [Q,R]− (p− r)Q ∧ S) ∧ id, (4.49)

and

X(0,1)
P−Q∧id (R− S ∧ id) = [[P −Q ∧ id, R− S ∧ id]](0,1) +Q ∧R− (Q ∧ S) ∧ id . (4.50)

Finally, invoking point 3 in Theorem 4.1.4, it results that the Jacobi algebroid struc-
ture (4.43)–(4.45) is equivalent to der-complex Ω •RM endowed with the homological degree

1 derivation d(0,1) covering de Rham differential d (that differential associated with the Lie
algebroid structure (4.43)–(4.44) over TM ⊕ RM). The homogeneous elements from Ω •RM
are the multi-linear and skew-symmetric applications

ω̃ :
(
X1 (M)⊕F (M)

)
× · · · ×

(
X1 (M)⊕F (M)

)
→ F (M) .

But the F (M)-module of k-multi-linear applications in the above is isomorphic to Ωk (M)⊕
Ωk−1 (M)

Ωk (M)⊕ Ωk−1 (M) ' Ω k
RM ,

(
(k)
ω ,

(k−1)
ω

)
←→

(k)
ω + id∧

(k−1)
ω , (4.51)

where (
(k)
ω + id∧

(k−1)
ω

)
((X1, f1) , . . . , (Xk, fk)) := 〈

(k)
ω ,X1 ∧ · · · ∧Xk〉+

+
k∑
j=1

(−)j−1〈
(k−1)
ω ,X1 ∧ · · ·

j
∧ · · · ∧Xk〉fj. (4.52)

Furthermore, the homological derivation of degree 1 in der-complex, d(0,1), becomes

d(0,1)

(
(k)
ω + id∧

(k−1)
ω

)
= d

(k)
ω + id∧

(
−d

(k−1)
ω +

(k)
ω

)
, (4.53)

where d is the standard de Rham differential associated with the manifold M .

Remark 4.1.8. Comparing the structures (4.49) (derived via the Gerstenhaber inner mul-
tiplication through (4.36)) and (3.8) (inferred from (3.4) via (3.8)), we conclude that they
coincide, as we expected.

Also, the relation (4.53) explains the provenience of definition (3.10).
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4.2 Jacobi bundles and Jacobi pairs

Let L→M be a line bundle. By its very definition [56], a Jacobi structure on the considered
line bundle is an R-Lie algebra structure on Γ (L), {•, •}, which is a derivation in both of
its arguments,

{•, e} ∈ D(L), e ∈ Γ(L).

It is noteworthy that such a structure is nothing but a local Lie algebra [42] on the line
bundle L→ M . With these specifications, let’s fix the terminology. By definition, a Jacobi
bundle is a line bundle endowed with a Jacobi structure over it, (L→M, {•, •}) while a
Jacobi manifold is a manifold equipped with a Jacobi bundle over it.

The previous definition places the Jacobi structures into the framework of Jacobi alge-
broid structure ([•, •] , σ,∇) over the pair (DL,L). Indeed, if we use the notation J := {•, •}

J (e1, e2) = {e1, e2}, e1, e2 ∈ Γ(L), (4.54)

then J ∈ D2L. Moreover, using the Gerstenhaber inner multiplication, direct computations
yields

(J ◦ J) (e1, e2, e3) = {{e1, e2}, e3}+ {{e2, e3}, e1}+ {{e3, e1}, e2} := −Jac{e1, e2, e3}, (4.55)

which further exhibits

[[J, J ]](e1, e2, e3) = 2Jac{e1, e2, e3}.

The last equality shows that a Jacobi structure on a line bundle L → M consists of the
bi-differential operator J ∈ D2L subject to the Maurer-Cartan equation

[[J, J ]] = 0. (4.56)

So, from now on, a Jacobi bundle is addressed in terms of the pair (L→M,J) with J a
bi-differential operator, J ∈ D2L, satisfying (4.56).

Remark 4.2.1. When the line bundle is trivial (4.17), according with Remark 4.1.7, a bi-
differential operator J ∈ D2RM is expressed in terms of a pair (Π, E) as J = Π−E ∧ id (see
(4.48)). With this expression at hand, the Gerstenhaber-Jacobi bracket (4.49) implies that
equation (4.56) is equivalent to

[Π,Π] + 2Π ∧ E = 0, [Π, E] = 0. (4.57)

With this expression of the bi-differential operator J , the R-Lie algebra structure over F(M)
(see the first formula in (4.18)), {•, •}, reduces to the well-known Jacobi bracket

{f, g} = iΠ (df ∧ dg) + iE (fdg − gdf) , f, g ∈ F(M).

A smooth manifold M equipped with a pair (Π, E) ∈ X2(M)×X1(M) that verifies equations
(4.57) (the well-known Jacobi pair) is said to be a Jacobi manifold [33].
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In the light of the previous remark, we conclude that Jacobi pairs are in one-to-one
correspondence with trivial Jacobi bundles.

Let (L→M,J) be a Jacobi bundle. By means of the isomorphisms (4.34), the bi-
differential operator J ∈ D2L exhibits (via the fact that the module Γ(J1L) is generated by
Im j1 ) the element Ĵ ∈ Γ (∧2J1L⊗ L)

〈j1e1 ∧ j1e2, Ĵ〉 := J (e1, e2) , e1, e2 ∈ Γ(L) (4.58)

which further displays the morphism of F(M)-modules

Ĵ ] : Γ
(
J1L

)
→ D(L), Ĵ ](j1e1)e2 := J (e1, e2) , e1, e2 ∈ Γ(L). (4.59)

This morphism allows the introduction of a smooth distribution on the base manifold

KJ := Im
(
σ ◦ Ĵ ]

)
, (4.60)

known as the characteristic distribution of the considered Jacobi bundle. By definition, the
considered Jacobi bundle is said to be transitive if the characteristic distribution coincides
with the tangent space of the base manifold

KJ = TM, (4.61)

or, equivalently, the vector bundle map σ ◦ Ĵ ] : J1L→ TM is surjective.
It is noteworthy that the transitiveness in the present context is strongly related with

the transitivity [73] of a specific Jacobi algebroid associated with the considered Jacobi
bundle. This is due to the fact that any Jacobi structure J := {•, •} on a given line bundle
L → M is equivalent to a Jacobi algebroid structure ([•, •]J , ρJ ,∇J) on the pair (J1L,L)
(see Proposition 3.4 in [23] or Propositions 2.2 and 2.3 in [73]). The Jacobi structure J
organizes J1L as a Lie algebroid with respect to[

j1e1, j
1e2

]
J

:= j1J (e1, e2) , ρJ(j1e) := Xe,

where Xe is the symbol (the well-known Hamiltonian vector field) corresponding to the
Hamiltonian derivation 4e, 4e ∈ D(L), associated with the section e ∈ Γ(L)

4e(e1) := J (e, e1) , e1 ∈ Γ(L), (4.62)

i.e.,
Xe := ρ (4e) . (4.63)

Moreover, in the light of axiom (4.56), which is equivalent to

[4e1 ,4e2 ] = 4{e1,e2},

it results that the Lie algebroid (J1L, [•, •]J , ρJ) enjoys the natural representation on the
line bundle L,

∇J : J1L→ DL, ∇J
j1e := 4e.

With these specifications at hand, it is clear that the characteristic distributions KJ and
Im ρJ of the Jacobi line bundle (L→M,J) and respectively of the Jacobi algebroid(
J1L,L, [•, •]J , ρJ ,∇J

)
coincide. As an immediate consequence, it results that the transi-

tivity of starting Jacobi line bundle is equivalent to that of the associated Jacobi algebroid.
This allows the integrability result given below.
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Theorem 4.2.2. The characteristic distribution of a Jacobi structure J ∈ D2L on the line
bundle L → M is completely integrable [71, 72] with the characteristic leaves equipped with
transitive Jacobi structures induced by J .

Transitive Jacobi bundles. A deep analysis [73] of transitive Jacobi bundles over even-
dimensional base manifolds has shown that these are in one-to-one correspondence with
locally conformal symplectic structures (lcs for short) over the same base manifolds.

Definition 4.2.3. By its very definition [73], an lcs structure on a given line bundle L→M
is a pair (∇, ω) consisting in a representation ∇ of the tangent Lie algebroid
(TM →M, [•, •] , id) on a line bundle and a non-degenerate L-valued 2-form ω ∈ Ω2(M ;L)
which is closed with respect to the homological degree 1 derivation d∇ associated with the
Jacobi algebroid structure ([•, •] , id,∇) on the pair (TM,L) (see the third statement in The-
orem 4.1.4)

d∇ω = 0.

In the light of the previous definition, it is easy to associate a Jacobi structure to a given
lcs one. Indeed, the non-degeneracy of the 2-form ω displays the vector bundle isomorphism

ω[ : TM → T ∗M ⊗ L, ω[X := −iXω, (4.64)

with iX the standard right inner multiplication [51] by vectors. Denoting by ω] its inverse,
we introduce the Hamiltonian vector fields by

Xe := ω] (d∇e) , e ∈ Γ(L), (4.65)

which exhibits the first-order differential operator

X• : Γ(L)→ TM, e 7→ Xe (4.66)

Indeed, putting together definition (4.65) with the Leibniz rule verified by the homological
degree 1 derivation d∇ covering d

d∇(fe) = df ⊗ e+ fd∇e, f ∈ F(M),

it results that
Xfe − fXe = ω](df ⊗ e), f ∈ F(M), e ∈ Γ(L).

At this stage, we define

J : Γ(L)× Γ(L)→ Γ(L), J(e1, e2) := 〈ω,Xe1 ∧Xe2〉, e1, e2 ∈ Γ(L), (4.67)

which is manifestly skew-symmetric and, due to (4.66), is a first-order differential operator
in each entry, i.e., J ∈ D2L.

The previous definition together with the closedness of the 2-form ω prove that the bi-
differential operator J verifies (4.56), i.e., it is a Jacobi structure on the line bundle.

In order to synthesize the converse relation, we introduce the bi-symbol of a given bi-
differential operator J ∈ D2L. In view of this, we start from the Spencer short exact
sequence

Ω1(M ;L)
γ
� Γ(J1L)

π1,0
� Γ(L), γ (df ⊗ e) := j1(fe)− fj1(e), π1,0(fj1(e)) := fe
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(which particulary splits as short exact sequence of R-vector spaces by the first-order pro-
longation j1 : Γ(L)→ Γ(J1L)) and consistently define the bi-symbol of J ,
J̃ ∈ Γ (∧2(T ∗M ⊗ L)∗ ⊗ L), via

〈η ∧ θ, J̃〉 := 〈γ(η) ∧ γ(θ), Ĵ〉, η, θ ∈ Ω1(M ;L). (4.68)

Using the natural pairing L∗⊗L = RM , the bi-symbol J̃ displays the vector bundle morphism

J̃ ] : T ∗M ⊗ L→ TM, 〈θ2, J̃
](θ1 ⊗ e1)〉e2 := 〈(θ1 ⊗ e1) ∧ (θ2 ⊗ e2), J̃〉 (4.69)

which enjoys
J̃ ] = σ ◦ Ĵ ] ◦ γ. (4.70)

At this stage, it becomes transparent that the bi-symbol of the bi-differential operator (4.67)
coincides with the inverse of the vector bundle isomorphism (4.64), J̃ ] = ω]. This result is a
key clue for the converse implication proof. Indeed, a simple dimension counting shows that
if (L→M,J) is a transitive Jacobi bundle over an even-dimensional base manifold then,
its bi-symbol, J̃ ], is non-degenerate, i.e., it is a vector bundle isomorphism. This allows the
construction of the non-degenerate 2-form ω ∈ Ω2(M ;L) via

〈ω, J̃θ ∧ J̃η〉 := 〈θ ∧ η, J̃〉.

Invoking again the transitivity, one constructs the correspondence

∇Xe := 4e,

which is nothing but a representation of the tangent Lie algebroid (TM →M, [•, •] , id) on
the line bundle. By direct computation [73], it results that (∇, ω) is a locally conformal
symplectic structure on the line bundle L→M .

Remark 4.2.4. It is noteworthy that, in the context of trivial line bundles, the resulting
Jacobi pairs are in one-to-one correspondence with locally conformal symplectic ones [76].

Remark 4.2.5. From the flow of the previous argumentation, we can conclude that if (L→
M,J) is a Jacobi bundle over an even-dimensional base manifold, then it is transitive, if and
only if the bi-symbol J̃ is non-degenerate.

Concerning transitive Jacobi bundles over odd-dimensional base manifolds, these were
shown to be in a one-to one-correspondence with contact structures over the same base
manifolds.

Definition 4.2.6. A contact structure over a smooth manifold (necessarily odd-dimensional)
M is a hyperplane distribution H ⊂ TM which is maximally non-integrable i.e. its curvature

ωH : H×H → L := TM/H, ωH (X, Y ) := [X, Y ] mod H (4.71)

is non-degenerate, i.e., the linear map

ω[H : Γ(H)→ Γ(H∗ ⊗ L), 〈ω[HX, Y 〉 := −ωH (X, Y )

is invertible.
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It is worth noticing that a contact structure can be defined, in a dual view, in terms of
a non-trivial canonical projection

θ ∈ Ω1(M ;L), 〈θ,X〉 := X mod H, (4.72)

which is nothing but the well-known contact 1-form. From this perspective, it results that
(4.71) is nothing but the curvature of the contact 1-form

ωH = −(d∇θ)|Ker θ ⇐⇒ 〈ωH, X ∧ Y 〉 = 〈θ, [X, Y ]〉, X, Y ∈ Γ(H), (4.73)

with respect to an arbitrary TM -connection on the line bundle L→M , ∇ : TM → DL.
Motivated by a similar analysis that will be done for Jacobi bundles with background,

we will sketch here the well-known correspondence between contact structures and transitive
Jacobi bundles over odd-dimensional manifolds [23, 73].

Let H be a contact distribution on M . In this context, there exists the decomposition of
R-vector spaces

X1(M) = XH ⊕ Γ(H), (4.74)

where XH is the R-Lie subalgebra

X ∈ XH ⇔ [X,Γ(H)] ⊂ Γ(H), (4.75)

of the R-Lie algebra X1(M) whose elements are the well-known Reeb vector fields [23](or
contact vector fields [73]). The previous decomposition comes from the splitting ω]H :
Γ (H∗ ⊗ L)→ Γ(H) of the short exact sequence of vector spaces

XH
⊆
� X1(M)

ϕ
� Γ (H∗ ⊗ L) ,

where
X1(M) 3 X → ϕX ∈ Γ (H∗ ⊗ L) , ϕX(Y ) := −〈θ, [X, Y ]〉. (4.76)

It is clear that ϕ is a first-order differential operator

ϕfX = df |H ⊗ 〈θ,X〉+ fϕX , (4.77)

which reduces to the inverse of ω]H, ω[H, when restricted to Γ(H),

ϕX = ω[HX, X ∈ Γ(H).

Now, putting together definition (4.72) and decomposition (4.74), it results that the
contact 1-form is invertible when restricted to XH. This further exhibits the R-linear operator
X : Γ(L) → X1(M) that associates to each section in the line bundle e ∈ Γ(L) the unique
vector field Xe ∈ XH ⊂ X1(M) enjoying

〈θ,Xe〉 = e. (4.78)

Moreover, by particularizing (4.77) to Reeb vector fields (4.78) it results that ϕfXe = df |H⊗e,
which combined with the splitting ωH eventually show that X is also a first-order differential
operator satisfying

Xfe = fXe − ω]H (df |H ⊗ e) . (4.79)
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The vector fields Xe associated with smooth sections in the line bundle e ∈ Γ(L) are nothing
but the Hamiltonian vector fields. By means of these ingredients, the bi-differential operator
that we are looking for reads

JH(e1, e2) := 〈θ, [Xe1 , Xe2 ]〉, e1, e2 ∈ Γ(L).

This definition combined with result (4.79) prove that Hamiltonian vector fields associated
with induced Jacobi structure JH are generated (via multiplication with the elements from
commutative algebra F(M)) by Reeb vector fields, i.e., the induced Jacobi structure is
transitive.

Conversely, let (L→M,J) be a transitive Jacobi bundle over the odd-dimensional smooth
manifold M , dimM = 2m+ 1. Due to the fact that Ĵ ] comes from a skew-symmetric linear
map, it results that Im Ĵ ] is even-dimensional. On the other hand, combining the relation
Im(σ ◦ Ĵ) = σ(Im Ĵ) with the assumed transitivity further gives

2m+ 2 = dim(J1L⊗ L) ≥ dim(Im Ĵ ]) = 2m+ 1 + dim(Im Ĵ ] ∩Kerσ),

which exhibits
dim(Im Ĵ ] ∩Kerσ) = 1⇒ dim(Im Ĵ) = 2m+ 2

i.e. the surjectivity of Ĵ ] and, moreover, the bijectivity of Ĵ ]. At the same time, due to the
fact that map (4.69) comes from the skew-symmetric one (4.68) implies that Im J̃ ] is even-
dimensional. In addition, a dimension counting based on (4.70), dim Im J̃ ] = dim Im(σ ◦
Ĵ ]) − dim(Ker(σ ◦ Ĵ ]) ∩ Im γ), supplemented with the surjectivity of the map σ ◦ Ĵ leads
to: i) Ker(σ ◦ Ĵ) ⊆ Im γ and ii) Im J̃ ] is a hyperplane distribution on M . Let’s denote this
distribution by

HJ := Im J̃ ] = (σ ◦ Ĵ)(Im γ). (4.80)

In the standard manner [51], this can be endowed with an L-valued 2-form, ωJ̃ ∈ Γ (∧2H∗ ⊗ L)
via

〈ωJ̃ , J̃
]α ∧ J̃ ]β〉 := J̃(α, β), α, β ∈ Ω1(M ;L),

which is non-degenerate. It remains to show that ωJ̃ is nothing but the curvature of the
hyperplane distribution

ωJ̃ = ωHJ ,

where ωHJ is associated with the hyperplane distribution (4.80) via (4.73). To do so, we
show that the R-vector space decomposition (4.74) takes place. This is done by constructing
an appropriate short exact sequence of R-vector spaces

Γ(HJ)
iHJ
� X1(M)

X̂
� ham(L→M,J), (4.81)

which, admits a split. Previously, we denoted by ham(L → M,J) the set of Hamiltonian
vector fields generated by the considered Jacobi structure

ham(L→M,J) := Im
(
σ ◦ Ĵ ] ◦ j1

)
.

Also, by iHJ we mean the inclusion vector bundle morphism, iHJ : Γ(HJ)→ X1(M).
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At this stage, we introduce the isomorphism of R-vector spaces

X : Γ(L)→ ham(L→M,J), X := σ ◦ Ĵ ] ◦ j1,

that enjoys of
Xfe = J̃ ](df ⊗ e) + fXe, f ∈ F(M), e ∈ Γ(L).

This isomorphism, supplemented with Spencer short exact sequence of F(M)-modules

Ω1(M ;L)
γ
� Γ(J1L)

π1,0
� Γ(L), (4.82)

and
iHJ ◦ J̃ ] = σ ◦ Ĵ ] ◦ γ, (4.83)

allow to close (via the universality of quotient space) the R-vector spaces diagram

Ω1(M ;L)
γ //

J̃]

��

Γ(J1L)
π1,0 //

σ◦Ĵ]
��

Γ(L)

X
��

Γ(HJ)
iHJ // X1(M) X̂ // ham(L→M,J)

(4.84)

Invoking the fact that the first-order prolongation, j1, splits the top line in (4.84), j1 ◦π1,0 =
idΓ(L), it results that the down line (which is also a short exact sequence of R-vector spaces)
in the same diagram admits a split too. This is nothing but the inclusion of Hamiltonian
vector fields into the algebra of smooth vector fields

X̂ ◦ iham = idham,

that finally exhibits
X1(M) = Γ(HJ)⊕ ham(L→M,J).

Remark 4.2.7. If the line bundle is trivial then the resulting Jacobi pairs are in one-to-one
correspondence with coorientable contact structures [64, 76].

Remark 4.2.8. From the flow of the previous argumentation, we can conclude that if (L→
M,J) is a Jacobi bundle over an odd-dimensional base manifold, then it is transitive, if and
only if the linear map Ĵ is non-degenerate.

The previous results concerning transitive Jacobi bundles can be synthesized as follows.

Theorem 4.2.9. If a Jacobi structure J ∈ D2L on the line bundle L→M is transitive then
M is either a locally conformal symplectic structure (if the base manifold is even-dimensional)
or a contact one (if the base manifold is odd-dimensional) on the same line bundle.

Jacobi bundle maps. The category of Jacobi bundles is completed by morphisms of
Jacobi bundles, i.e., Jacobi maps. Let (Li →Mi, {•, •}i), i = 1, 2 be two Jacobi bundles.
A regular vector bundle morphism (i.e. fiber-wise isomorphism) ϕ : L1 → L2 covering
ϕ ∈ C∞(M1,M2) is said to be a Jacobi bundle map [56] iff

ϕ∗{λ, µ}2 = {ϕ∗λ, ϕ∗µ}1, λ, µ ∈ Γ(L2). (4.85)

Previously, by ϕ∗ we denoted the pull-back associated with the given regular vector bundle
morphism

ϕ∗ : Γ(L2)→ Γ(L1), (ϕ∗µ) (x) := (ϕx)
−1 µ

(
ϕ(x)

)
, x ∈M1.
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4.3 Twisted Jacobi bundles and twisted Jacobi pairs

In this part we relax the Maurer-Cartan equation (4.56) by twisting it via a closed L-valued
Atiyah 3-form Ψ ∈ Ω3

L := Γ (∧3(DL)∗ ⊗ L),

dLΨ = 0, (4.86)

i.e,

[[J, J ]] = 2
(
∧3Ĵ ]

)∗
Ψ, (4.87)

where by ∧3Ĵ ] we meant the linear (with respect to the commutative algebra F(M)) exten-
sion of map (4.59),

∧3Ĵ ] : Γ
(
∧3J1L

)
→ Γ

(
∧3DL

)
, ∧3Ĵ ](j1e1, j

1e2, j
1e3) := Ĵ ](j1e1) ∧ Ĵ ](j1e2) ∧ Ĵ ](j1e3).

In addition, in the light of isomorphisms (4.34), the object in the left-hand side of (4.87) is
an element from Γ (∧3J1L⊗ L).

According to Remark 4.1.6, der-complex (Ω•L, dL) is acyclic. This means that there exists
the L-valued Atiyah 2-form Ω ∈ Ω2

L such that Ψ = dLΩ. With these prolegomena at hand,
we can introduce the concept of the twisted Jacobi bundle in its full generality.

Definition 4.3.1. A twisted Jacobi bundle is a triple (L→M,J,Ω) consisting in a line
bundle L → M , a first-order bi-differential operator J ∈ D2L and an L-valued Atiyah 2-
form Ω ∈ Ω2

L that verify the consistency condition

[[J, J ]] = 2
(
∧3Ĵ ]

)∗
dLΩ. (4.88)

Extending the terminology adopted for Jacobi manifolds, we say that a given smooth
manifold M is a twisted Jacobi one if it is the base manifold for a twisted Jacobi bundle.

In order to show that twisted Jacobi bundles encompass twisted Jacobi manifolds [62, 64],
we are going to briefly address the trivial line bundle situation (4.17). Using Remark 4.1.7,
the bi-differential operator J becomes

J = Π− E ∧ id, (4.89)

while its ‘hat’ associated morphism reads

Ĵ ] : Ω1(M)⊕F(M)→ X1(M)⊕F(M), Ĵ ](θ + f ∧ id) = Π]θ + fE − (iEθ) ∧ id . (4.90)

Direct computation based on (4.90) exhibits the expression of ∧3Ĵ ]

∧3Ĵ ](ψ + ω ∧ id) = ∧3Π]ψ + ∧2Π]ω ∧ E −
(
∧2Π]iEψ + Π]iEω ∧ E

)
∧ id, (4.91)

with ∧•Π] the linear extensions of

Π] : Ω1(M)→ X1(M), Π]α := −jαΠ.

Invoking the definition of the homological degree 1 derivation (4.53), we can always
choose the Atiyah 2-form Ω as

Ω = ω ∈ Ω2(M)
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such that

d(0,1)ω = dω + id∧ω. (4.92)

Putting together the information in (4.89)–(4.92) into the twisted Maurer-Cartan equation
(4.88) one displays the equations

1
2

[Π,Π] + E ∧ Π = ∧3Π]dω + ∧2Π]ω ∧ E, [E,Π] = −
(
∧2Π]iEdω + Π]iEω ∧ E

)
, (4.93)

which exhibit a twisted Jacobi structure [62, 64] on the base manifold M .
In the light of the previous analysis, we conclude that twisted Jacobi pairs (see Definition

3.1.1) are in one-to-one correspondence with twisted Jacobi bundles over trivial line bundles.
Like in the standard Jacobi bundles (see Section 4.2), we introduce the characteristic

distribution associated with a twisted Jacobi bundle (L→M,J,Ω) via

KJ := Imσ ◦ Ĵ ] (4.94)

and say that the considered twisted Jacobi bundle is transitive if

KJ = TM. (4.95)

In the sequel we are focusing on the characterization of transitive twisted Jacobi bundles.
For doing this, we initially introduce the twisted versions of locally conformal symplectic
structures and contact ones.

Definition 4.3.2. A twisted locally conformal symplectic structure on a given line bundle
L → M is a pair ((∇, ω) , ω̂) consisting in a representation ∇ of the tangent Lie algebroid
(TM → M, [•, •] , id) on a line bundle and two L-valued 2-forms ω, ω̂ ∈ Ω2(M ;L), among
which ω is non-degenerate and verifies the consistency condition

d∇ (ω − ω̂) = 0. (4.96)

Previously, by d∇ we denoted the homological degree 1 derivation associated with the
Jacobi algebroid structure ([•, •] , id,∇) on the pair (TM,L) (see the third statement in
Theorem 4.1.4).

It is worth noticing that in the trivial line bundle context (4.17), a twisted locally confor-
mal symplectic structure reduces to a twisted locally conformal symplectic pair [19, 20]. The
manifold endowed with such a pair being nothing but a twisted locally conformal symplectic
one [62, 64]. Indeed, when the line bundle is trivial (4.17), according to Remark 4.1.5 the
flat connection ∇ is given by the closed 1-form α ∈ Ω1(M), α := ω∇ via (4.19). Clearly, here
closedness refers to de Rham differential, which coincides with homological degree 1 deriva-
tion associated with the Lie algebroid (TM →M, [•, •] , id) (see third statement in Theorem
4.1.1). Moreover, in the same context, the module Ω•(M ;L) over the graded commutative
algebra Ω•(M) reduces to Ω•(M) over the same graded commutative algebra, which fur-
ther implies that the L-valued 2-forms in Definition 4.3.2 are ordinary ones, ω, ω̂ ∈ Ω2(M).
Within this framework, the homological degree 1 derivation (4.25), which will be denoted
by dα, reduces to

dαθ = dθ + α ∧ θ, α ∈ Ω•(M). (4.97)
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The previous derivation is nothing but the well-known Morse-Novikov derivation [6]. With
all of these at hand, the considered twisted locally conformal symplectic structure reduces to
the pair ((ω, α) , ω̂) with ω a non-degenerate 2-form that verifies the consistency condition

d(ω − ω̂) + α ∧ (ω − ω̂) = 0,

i.e., a twisted locally conformal symplectic pair [16, 62, 64].

Definition 4.3.3. A twisted contact structure on a manifold M consists of a hyperplane
distribution H ⊂ TM and an L-valued 2-form ψ ∈ Ω2(M ;L) such that

Ω := ωH + ψ|H ∈ Γ
(
∧2H∗ ⊗ L

)
(4.98)

is non-degenerate. In (4.98), ωH is the curvature (4.71) of the considered hyperplane distri-
bution H.

It is noteworthy that the structure previously introduced has been recently addressed
[75] as almost contact structure.

Due to the skew-symmetry of Ω, its non-degeneracy necessarily implies that H is even-
dimensional, which is equivalent with the fact that the base manifold M is odd-dimensional,
dimM = 2m+ 1.

We briefly show that Definition 4.3.3 encompasses the twisted cooriented [28] contact
manifolds [64]. For doing this, we assume that the hyperplane distribution comes from the
contact 1-form θ ∈ Ω1(M) via

H = Ker θ, (4.99)

which further leads to the isomorphism

L = RM

exhibited (via the universality property of the quotient vector bundle) by the surjective
vector bundle morphism

θ : TM → RM , Xp → 〈θp, Xp〉.
Based on this isomorphism, the L-valued 2-forms from Definition 4.3.3 can be interpreted
as elements in Γ (∧2H∗). Particulary, by means of definition (4.71) it results that

ωH = − dθ|H . (4.100)

At this stage we use a splitting of the short exact sequence of vector bundles [59]

H
iH
� TM

θ
� RM ,

i.e., an injective vector bundle map ε : RM → TM which enjoys the property

θ ◦ ε = idRM .

The injective morphism is equivalent with a nowhere vanishing vector field E ∈ (TM)×,
which satisfies

〈θ, E〉 = 1.
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Using the previous vector field, we introduce the vector bundle map

pH : TM → H, pH(X) := X − 〈θ,X〉E

which is surjective and enjoys the property

pH ◦ iH = idH .

Finally, we construct the 2-forms ω := p∗HωH, ω̃ := p∗Hψ and Ω̃ := p∗HΩ = ω + ω̃. By
construction, it is clear that

Ω̃[ = p∗HΩ[pH,

which, in the light of the non-degeneracy of Ω, further leads to

Im Ω̃[ = Im p∗H = (Ker pH)◦ = 〈E〉◦.

The last result shows that T ∗M = Im Ω̃[⊕〈θ〉, which exhibits the volume form θ∧ Ω̃m. This
result supplemented with (4.100) display also the volume form

µ := θ ∧ (dθ − ω̃)m , (4.101)

i.e., the considered distribution is a twisted cooriented [28] contact one [64].
At this stage, we remember that in the context of trivial line bundle it has been shown [62,

64]that twisted Jacobi bundles are in one-to-one correspondence either with twisted locally
conformal symplectic structures on the same line bundles (i.e. twisted locally conformal
symplectic pairs) when the base manifold is even-dimensional or with twisted cooriented
contact structures on the same base manifolds when the latter are odd-dimensional. This
result can be generalized to arbitrary line bundles as follows.

Theorem 4.3.4. Let (L→M,J,Ω) be a transitive twisted Jacobi bundle. Then the following
alternative holds.

� If the base manifold is even-dimensional then the considered Jacobi bundle is equivalent
to a twisted locally conformal symplectic structure on the same line bundle.

� If the base manifold is odd-dimensional then the considered Jacobi bundle is equivalent
to a twisted contact structure displaying the same line bundle.

Proof. This will be done in the general context of Jacobi bundles with background (see
below).

Moreover, in the same context (trivial line bundle), the characteristic distributions asso-
ciated with twisted Jacobi bundles have been proved to be completely integrable [62, 64].

In [64] (see Theorem 3.2) the proof uses the involutivity of the characteristic distribution
and the Jacobi bracket associated with the considered twisted Jacobi pair.

In [62], the proof has been done in two steps. Initially, the omni-Lie algebroid associated
with the trivial line bundle (4.17)

DRM = (TM × R)⊕ (T ∗M × R)
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is organized as a d(0,1)Ω-twisted Courant-Jacobi algebroid. Then, it is shown that

graphĴ ] :=
(
Ĵ ] (α + f ∧ id) , α + f ∧ id

)
,

with Ĵ ] given in (4.90), is a Dirac-Jacobi subbundle in the previous Courant-Jacobi algebroid.
Due to the fact that its characteristic distribution coincides with Imσ ◦ Ĵ ] it results the
integrability [22] of the characteristic distribution associated with the starting twisted Jacobi
bundle. Based on the recent results concerning Dirac-Jacobi bundles [79], the previous
algorithm can also be implemented for a generic twisted Jacobi bundle (L→M,J,Ω), where
the omni-Lie algebroid becomes

DL = DL⊕ J1L

while its dLΩ-twisted Courant-Jacobi algebroid structure consists in the Dorfman-like bracket

[[(�1, µ1), (�2, µ2)]]dLΩ :=
(

[�1,�2],L(DL,L)
�1

µ2 − ι(DL,L)
�2

dLµ1 + 〈dLΩ,�1 ∧�2 ∧ •〉
)
,

the non-degenerate metric

〈〈(�1, µ1), (�2, µ2)〉〉 := 〈�1, µ2〉+ 〈�2, µ1〉 (4.102)

and the vector bundle morphism

pD : DL⊕ J1L→ DL, pD(�, µ) := �.

In definition (4.102), we denoted by 〈•, •〉 the L-pairing between DL and J1L given in (4.41).
In the light of this result, the following theorem holds.

Theorem 4.3.5. Let (L→M,J,Ω) be a twisted Jacobi bundle. Then its characteristic
distribution is completely Stefan-Sussmann integrable with the characteristic leaves transitive
twisted Jacobi manifolds.

4.4 Jacobi bundles with background and Jacobi man-

ifolds with background

In this section, we will do a complete characterization, as best as we can, of a Jacobi-like
bundle, which comes from (4.87) when we give up on the closedness condition (4.86).

Definition 4.4.1. A Jacobi bundle with a background 3-form, shortly a Jacobi bundle with
background, is a triple (L→M,J,Ψ) consisting of a line bundle L → M , a first-order
bi-differential operator J ∈ D2L, and an L-valued Atiyah 3-form Ψ ∈ Ω3

L that verify the
consistency condition

[[J, J ]] = 2
(
∧3Ĵ ]

)∗
Ψ. (4.103)

Extending the terminology adopted for (twisted) Jacobi manifolds, we say that a given
smooth manifold M is a Jacobi manifold with background if it is the base manifold for a
Jacobi bundle with background.
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To prove that Jacobi bundles with background encompass Jacobi manifolds with back-
grounds [16] (see Chapter 3), we analyze the outputs of the previous definition in the context
of the trivial line bundle (4.17). In view of this, we use Remark 4.1.7 and exhibit for the
bi-differential operator J expression (4.89). Furthermore, the ’hat‘ morphisms Ĵ ] and ∧3Ĵ ]

are given by (4.90) and (4.91) respectively. In addition, by means of the isomorphism (4.51),
the Atiyah 3-form Φ reads

Ψ = φ+ ω ∧ id, φ ∈ Ω3(M), ω ∈ Ω2(M). (4.104)

By inserting the previous information in the consistency equation (4.103), one derives the
equations

1
2

[Π,Π] + E ∧ Π = ∧3Π]φ+ ∧2Π]ω ∧ E, [E,Π] = −
(
∧2Π]iEφ+ Π]iEω ∧ E

)
, (4.105)

which is nothing but a Jacobi pair (Π, E) with the background (φ, ω) on the base manifold
M [16]. Remember that Jacobi pairs with background have been scrutinized in the previous
chapter.

The outputs displayed in the trivial line bundle setting allow us to conclude that Jacobi
pairs with background are in one-to-one correspondence with Jacobi bundles with background
over trivial line bundles.

As in the Jacobi/ twisted Jacobi bundles (see Sections 4.2 and 4.3), we define the char-
acteristic distribution corresponding to a Jacobi bundle with background (L→M,J,Ψ) via
(4.94). Moreover, we say that the considered Jacobi bundle with background is transitive if
relation (4.95) takes place.

Let (L→M,J,Ψ) be a Jacobi bundle with background. Its characteristic distribution is
strongly related with the Hamiltonian vector fields generated by the first-order bi-differential
operator J ∈ D2L. These vector fields are symbols associated with Hamiltonian derivations

4e ∈ D1L, 4e := Ĵ ](j1e), e ∈ Γ(L), (4.106)

i.e.,
Xe := σ(4e) (4.107)

Indeed, comparing the definition of characteristic distribution (4.94) with that of the Hamil-
tonian vector fields (4.108), we get

KJ =
⋃
{Xe : e ∈ Γ(L)}. (4.108)

Proposition 4.4.2. The characteristic distribution KJ corresponding to a Jacobi bundle
with background (L→M,J,Ψ) is involutive.

Proof. Let {•, •} be the R-linear and skew-symmetric bracket associated with the first-order
bi-differential operator J ,

{e1, e2} := J(e1, e2) = 4e1e2. (4.109)

In the light of definition (4.109), result (4.55) leads to

1

2
[[J, J ]](e1, e2, e) = [4e1 ,4e2 ]e−4{e1,e2}e, e, e1, e2 ∈ Γ(L) (4.110)
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On the other hand, by means of the consistency equation (4.103), the previous relation gives

[4e1 ,4e2 ]e−4{e1,e2}e = 〈Ψ,4e1 ∧4e2 ∧4e〉,

or, equivalently
[4e1 ,4e2 ]e−4{e1,e2}e = 〈ι(DL,L)

4e2
ι
(DL,L)
4e1

Ψ,4e〉. (4.111)

The second term in the right hand side of the previous equality can be related to the image
of Ĵ ]. Indeed, if we use the notation Φ := ι

(DL,L)
4e2

ι
(DL,L)
4e1

Ψ, then Φ ∈ Ω1
L = Γ(J1L). In

addition, due to the skew-symmetry of Ĵ (see definition (4.58)), combined with the first
point in Remark 4.1.6, it results that

〈Φ, Ĵ ](j1e)〉 = 〈j1e ∧ Φ, Ĵ〉 = −〈Φ ∧ j1e, Ĵ〉 = −Ĵ ](Φ)e (4.112)

Putting together results (4.111) and (4.112), we infer

[4e1 ,4e2 ] = 4{e1,e2} + Ĵ ]
(
ι
(DL,L)
4e2

ι
(DL,L)
4e1

Ψ
)
. (4.113)

Applying the anchor on the last equality

[Xe1 , Xe2 ] = X{e1,e2} + σ ◦ Ĵ ]
(
ι
(DL,L)
4e2

ι
(DL,L)
4e1

Ψ
)
, (4.114)

i.e., the characteristic distribution is involutive.

Theorem 4.4.3. The characteristic distribution corresponding to a Jacobi bundle with back-
ground (L→M,J,Ψ), KJ , is completely Stefan-Sussmann [71, 72] integrable.

Proof. We can prove the theorem in two fashions. First, passing to local picture, the Jacobi
bundle with background reduces to a Jacobi pair with background whose characteristic dis-
tribution has been proved to be integrable (see Theorem 3.4.7). Second, by using Proposition
4.4.2, in the light of the holonomy groupoid associated with the characteristic distribution
[2], the integrability emerges.

Transitive Jacobi bundles with background. Here, we shall analyze the transitive
Jacobi bundles. In the light of Remarks 4.2.5 and 4.2.8 it results that the analysis essen-
tially depends on the dimension parity of the base manifold. Invoking a similar analysis
in the previous chapter and sections of the present chapter, we expect to exhibit kinds of
locally conformal symplectic/ contact structures that encode transitive Jacobi bundles with
background.

Definition 4.4.4. A locally conformal symplectic structure with background on a given line

bundle L → M is a pair
(

(∇, ω) ,
(
ψ̂, ω̂

))
consisting of a representation ∇ of the tangent

Lie algebroid (TM → M, [•, •] , id) on a line bundle, two L-valued 2-forms ω, ω̂ ∈ Ω2(M ;L)
among which ω is non-degenerate and an L-valued 3-form ψ̂ ∈ Ω3(M ;L) that verify the
consistency condition

d∇ (ω − ω̂) = ψ̂. (4.115)
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In the previous definition, we denoted by d∇ the homological degree 1 derivation as-
sociated with the Jacobi algebroid structure ([•, •] ,∇) on the pair (TM,L) (see the third
statement in Theorem 4.1.4).

Remark 4.4.5. The non-degeneracy of the 2-form ω implies that the base manifold is nec-
essary even-dimensional.

It is worth noticing that when the line bundle is trivial (4.17) then the locally confor-
mal symplectic structure with background reduces to a locally conformal symplectic pair
with background [16, 19, 20]. The manifold endowed with such a pair being nothing but
a locally conformal symplectic manifold with background [16, 19, 20]. Indeed, when the
line bundle is trivial (4.17), accordingly with Remark 4.1.5 the flat connection ∇ is given
by the closed 1-form α ∈ Ω1(M), α := ω∇ via (4.19). Moreover, in the same context, the
module Ω•(M ;L) over the graded commutative algebra Ω•(M) reduces to Ω•(M) over the
same graded commutative algebra, which further implies that the L-valued forms in Def-
inition 4.4.4 are exterior forms on the smooth manifold, ω, ω̂ ∈ Ω2(M) and ψ̂ ∈ Ω3(M).
Within this framework, the homological degree 1 derivation (4.25), which will be denoted
by dα, reduces to (4.97). Putting together the previous information, the considered locally
conformal symplectic structure with background consists of the geometric objects

α ∈ Ω1(M), ω, ω̂ ∈ Ω2(M), ψ̂ ∈ Ω3(M),

among which α is closed and ω is non-degenerate. In addition, the previous objects verify
the consistency condition

d(ω − ω̂) + α ∧ (ω − ω̂) = ψ̂.

This means that
(

(ω, α) ,
(
ψ̂ + dω̂, ω̂

))
is nothing but a locally conformal symplectic pair

with background [16, 19, 20].

Proposition 4.4.6. Let
(

(∇, ω) ,
(
ψ̂, ω̂

))
a locally conformal symplectic structure with back-

ground on the line bundle L → M . Then, there exists a canonically associated transitive
Jacobi bundle with background (L→M,J,Ψ).

Proof. Starting with the non-degenerate L-valued 2-form ω, we introduce the Hamiltonian
vector fields by (4.65) and the first-order bi-differential operator J via (4.67). Also, by direct
computation we get

J(e1, e2) = 〈d∇e2, Xe1〉 = ∇Xe1
e2, (4.116)

which shows that

4e := Ĵ ](j1e) = ∇Xe ,
(
σ ◦ Ĵ ]

)
(j1e) = Xe. (4.117)

Invoking the vector bundle isomorphism (4.64) again, the last result further proves that the
bi-differential operator (4.116) associated with the considered locally conformal symplectic
structure with background enjoys (4.95). Moreover, the bi-symbol associated with the bi-
differential operator (4.67) coincides with the inverse of (4.64), i.e.,

J̃ ] = ω], (4.118)
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that further leads to

TM = Imω] = Im J̃ ] ⊆ Im(σ ◦ Ĵ ]) ⊆ TM (4.119)

which eventually means that the bi-differential operator associated to the considered locally
conformal symplectic structure with background verifies (4.61).

At this stage, using the pull-back of the symbol map σ, from the remaining L-valued
forms involved in the considered structure (see Definition 4.4.4), we introduce the L-valued
forms in Atiyah der-complex

ω̃ :=
(
∧2σ

)∗
ω̂ ∈ Ω2

L, ψ̃ :=
(
∧3σ

)∗
ψ̂ ∈ Ω3

L, (4.120)

that allow the construction of

Ψ := dLω̃ + ψ̃. (4.121)

With all this preparation at hand, we are ready to show that the consistency condition
(4.115) implies that the bi-differential operator (4.116) enjoys of (4.103), i.e., it is a Jacobi
structure with the background Ψ on the considered line bundle L → M . Indeed, by direct
computation we get

〈d∇ω,Xe1 ∧Xe2 ∧Xe3〉 =
∑
cyclic

(
∇Xe1

〈ω,Xe2 ∧Xe3〉 − 〈ω, [Xe1 , Xe2 ] ∧Xe3〉
)

= ∇Xe2
∇Xe1

e3 +∇Xe3
∇Xe2

e1 +∇Xe1
∇Xe3

e2

= J (e2, J(e1, e3)) + J (e3, J(e2, e1)) + J (e1, J(e3, e2))

=
1

2
[[J, J ]] (e1, e2, e3) = 〈1

2
[[J, J ]], j1e1 ∧ j1e2 ∧ j1e3〉,

〈d∇ω̂, Xe1 ∧Xe2 ∧Xe3〉 = 〈d∇ω̂,
(
σ ◦ Ĵ ]

)
(j1e1) ∧

(
σ ◦ Ĵ ]

)
(j1e2) ∧

(
σ ◦ Ĵ ]

)
(j1e3)〉

= 〈
(
∧3σ

)∗
d∇ω̂,4e1 ∧4e2 ∧4e3〉

= 〈dLω̃,4e1 ∧4e2 ∧4e3〉

= 〈
(
∧3Ĵ ]

)∗
dLω̃, j

1e1 ∧ j1e2 ∧ j1e3〉,

and also

〈ψ̂,Xe1 ∧Xe2 ∧Xe3〉 = 〈ψ̂,
(
σ ◦ Ĵ ]

)
(j1e1) ∧

(
σ ◦ Ĵ ]

)
(j1e2) ∧

(
σ ◦ Ĵ ]

)
(j1e3)〉

= 〈
(
∧3σ

)∗
ψ̂,4e1 ∧4e2 ∧4e3〉

= 〈ψ̃,4e1 ∧4e2 ∧4e3〉

= 〈
(
∧3Ĵ ]

)∗
ψ̃, j1e1 ∧ j1e2 ∧ j1e3〉.

Inserting the last three equalities into the consistency condition (4.115), we conclude that
the bi-differential operator (4.116) enjoys of (4.103), i.e., (L → M,J,Ψ) is a Jacobi bundle
with background, which, in the light of (4.119) is transitive.
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Remark 4.4.7. The previous result allows us to conclude that, given a line bundle
L→M , every locally conformal symplectic structure with background ((∇, ω), (ψ̂, ω̂)) is fully
encoded into its associated transitive Jacobi structure with background (J,Ψ). Indeed, from
(4.116) we can read both the TM-connection on the line bundle and the Hamiltonian vector
fields Xe corresponding to sections in the line bundle, e ∈ Γ(L). Also, from (4.118) we
can read the non-degenerate L-valued 2-form ω ∈ Ω(M ;L). Finally, in the light of (4.42)
supplemented with the injectivity of σ∗, from (4.120) we can extract the remaining L-valued
forms ω̂ ∈ Ω2(M ;L) and ψ̂ ∈ Ω3(M ;L), once we have Ψ ∈ Ω3

L.

There exists also the converse of the previous correspondence.

Proposition 4.4.8. Let (L→M,J,Φ) be a transitive Jacobi bundle with background over
the even-dimensional base manifold M . There exists a locally conformal symplectic structure

with background
(

(∇, ω) ,
(
ψ̂, ω̂

))
on the same line bundle L → M that generates (via

Proposition 4.4.6) the starting Jacobi structure with background.

Proof. Initially, we prove that the bi-symbol (4.68) associated with the bi-differential opera-
tor J is non-degenerate, i.e., map (4.69) is a vector bundle isomorphism. The skew-symmetry
of the bi-symbol (4.68) further implies that the rank of J̃ ] is even-dimensional. On the other
hand, the transitivity of the considered structure (4.95) supplemented with the fact that the
fibers of DL are one-dimension greater than those of Im Ĵ ] exhibits the point-wise decom-
position

DL = Im Ĵ ] ⊕ 〈1〉 (4.122)

and also
J1L = Ker Ĵ ] ⊕ Im γ. (4.123)

By means of the result (4.70), the last point-wise decomposition of the fibers of the vector
bundle J1L allows to conclude that J̃ ] is a surjective vector bundle morphism, and, moreover
a vector bundle isomorphism. Based on this isomorphism, we construct the non-degenerate
L-valued 2-form ω, ω ∈ Ω2(M ;L) via

〈ω,X ∧ Y 〉 := 〈J̃ , J̃ [X ∧ J̃ [Y 〉, X, Y ∈ X1(M). (4.124)

Denoting by J̃ [ the inverse of J̃ ], we define the vector bundle morphism

∇ : TM → DL, ∇ := Ĵ ] ◦ γ ◦ J̃ [, X1(M) 3 X 7→ ∇X ∈ D1L, (4.125)

i.e., a TM -connection on the line bundle. We prove that this is a flat one. In view of this,
using the definition of Hamiltonian vector fields (4.106) and decomposition (4.123) we get

∇Xe = Ĵ ] ◦ γ ◦ J̃ [ ◦ σ ◦ Ĵ ](j1e) = Ĵ ](j1e) = 4e. (4.126)

With the previous result at hand, we prove that (4.125) is a flat connection. By direct
computation based on (4.126), (4.113) and (4.114), we derive the curvature associated with
the connection (4.125)

R∇ (Xe1 , Xe2) e3 =
([
∇Xe1

,∇Xe2

]
−∇[Xe1 ,Xe2 ]

)
e3
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=
(
[4e1 ,4e2 ]−4{e1,e2}

)
e3 − 〈Ψ,4e1 ∧4e2 ∧4e3〉

= 〈1
2

[[J, J ]], j1e1 ∧ j1e2 ∧ j1e3〉 − 〈Ψ,4e1 ∧4e2 ∧4e3〉

= 〈1
2

[[J, J ]]−
(
∧3Ĵ ]

)∗
Ψ, j1e1 ∧ j1e2 ∧ j1e3〉 = 0,

i.e., (4.125) is a flat connection.
It remains to identify the L-valued forms ω̂ and φ̂ from Definition 4.4.4 and to show

that they are enjoying the consistency condition (4.115). Due to the acyclicity of Atiyah
der-complex (see Remark 4.1.6) it results the decomposition

Ω3
L = Ker3 dL ⊕Ker3 ι

(DL,L)
1

that further gives
Ψ = dLω̃ + ψ̃, (4.127)

with
ω̃ := ι

(DL,L)
1

Ψ, ψ̃ := ι
(DL,L)
1

dLΨ. (4.128)

Now, due to the injectivity of map σ∗, supplemented with decomposition (4.122) it results
that there exists the unique L-valued forms ω̂ ∈ Ω2(M ;L) and ψ̂ ∈ Ω3(M ;L) such that

ω̃ :=
(
∧2σ

)∗
ω̂ ∈ Ω2

L, ψ̃ :=
(
∧3σ

)∗
ψ̂ ∈ Ω3

L. (4.129)

Finally, we show that the L-valued forms (4.124) and (4.130) verify the consistency condition
(4.115). By direct computation, we successively obtain

〈d∇ω,Xe1 ∧Xe2 ∧Xe3〉 =
∑
cyclic

(
∇Xe1

〈ω,Xe2 ∧Xe3〉 − 〈ω, [Xe1 , Xe2 ] ∧Xe3〉
)

= ∇Xe2
∇Xe1

e3 +∇Xe3
∇Xe2

e1 +∇Xe1
∇Xe3

e2

= J (e2, J(e1, e3)) + J (e3, J(e2, e1)) + J (e1, J(e3, e2))

=
1

2
[[J, J ]] (e1, e2, e3) = 〈1

2
[[J, J ]], j1e1 ∧ j1e2 ∧ j1e3〉,

〈d∇ω̂, Xe1 ∧Xe2 ∧Xe3〉 = 〈d∇ω̂,
(
σ ◦ Ĵ ]

)
(j1e1) ∧

(
σ ◦ Ĵ ]

)
(j1e2) ∧

(
σ ◦ Ĵ ]

)
(j1e3)〉

= 〈
(
∧3σ

)∗
d∇ω̂,4e1 ∧4e2 ∧4e3〉

= 〈dLω̃,4e1 ∧4e2 ∧4e3〉

= 〈
(
∧3Ĵ ]

)∗
dLω̃, j

1e1 ∧ j1e2 ∧ j1e3〉,

and also

〈ψ̂,Xe1 ∧Xe2 ∧Xe3〉 = 〈ψ̂,
(
σ ◦ Ĵ ]

)
(j1e1) ∧

(
σ ◦ Ĵ ]

)
(j1e2) ∧

(
σ ◦ Ĵ ]

)
(j1e3)〉

= 〈
(
∧3σ

)∗
ψ̂,4e1 ∧4e2 ∧4e3〉

= 〈ψ̃,4e1 ∧4e2 ∧4e3〉

= 〈
(
∧3Ĵ ]

)∗
ψ̃, j1e1 ∧ j1e2 ∧ j1e3〉.

that prove the consistency condition (4.115).
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The results offered by the last two propositions are compactly written in the theorem
below.

Theorem 4.4.9. Let L → M be a line bundle and (J,Ψ) be a Jacobi structure with back-
ground on it. Then the following conditions are equivalent:

1. (J,Ψ) is associated with a (unique) locally conformal symplectic structure with back-
ground;

2. M is even-dimensional, and the structure (J,Ψ) is transitive;

3. the bi-symbol J̃ is non-degenerate.

In the last part of this section, we analyze transitive Jacobi bundles with background
over odd-dimensional base manifolds.

Definition 4.4.10. Let L→M be a line bundle and J be a bi-differential operator, J ∈ D2L.
The operator is said to be non-degenerate if its corresponding ‘hat’ linear map (4.58) is non-
degenerate.

At this point, it is clear that the ‘musical’ maps associated with the non-degenerate linear
map Ĵ give a one-to-one correspondence between non-degenerate bi-differential operators and
non-degenerate Atiyah 2-forms

D2L 3 J, J − non-degenerate↔ Ω̄ ∈ Ω2
L,Ω− non-degenerate

Ĵ [ := (Ĵ ])−1 = Ω̄[, (4.130)

which further leads to

dLΩ̄ =
1

2
(∧3Ĵ [)∗[[J, J ]]. (4.131)

The last relation can be derived by direct computation, as follows.

〈dLΩ̄,4e1 ∧4e2 ∧4e3〉 =
∑
cyclic

(4e1〈Ω̄,4e2 ∧4e3〉 − 〈Ω̄, [4e1 ,4e2 ] ∧4e3〉)

=
∑
cyclic

(4e1〈Ω̄[4e3 ,4e2〉 − 〈Ω̄[4e3 , [4e1 ,4e2 ]〉)

= −
∑
cyclic

4e14e2e3 = −1

2
[[J, J ]](e1, e2, e3)

= −1

2
〈j1e1 ∧ j1e2 ∧ j1e3, [[J, J ]]〉

=
1

2
〈(∧3Ĵ [)∗[[J, J ]],4e1 ∧4e2 ∧4e3〉.

This analysis is systematized in the proposition below.

Proposition 4.4.11. Let L→M be a line bundle.

1. For any Jacobi structure with background (J,Ψ), the following conditions are equivalent:
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� (J,Ψ) is non-degenerate, and

� (J,Ψ) is transitive and M is odd-dimensional.

2. A non-degenerate Jacobi structure with background (J,Ψ) is nothing more than a non-
degenerate bi-differential operator J on the considered line bundle.

3. If a twisted Jacobi structure (J,Ψ) is non-degenerate, then it is also closed, dLΨ = 0,
with precisely Ψ = dLΩ̄, where Ω̄[ = (Ĵ ])−1.

Proof. 1. The assertions do not take into account the Atiyah 3-form, which means that the
proof follows as specified in Remark 4.2.8. 2. By considering a non-degenerate bi-differential
operator J , the unique Atiyah 3-form that enjoys of (4.103) is

Ψ =
1

2
(∧3Ĵ [)∗[[J, J ]].

3. The proof has been done in the preamble of the present proposition.

Remark 4.4.12. The previous proposition shows that for a given line bundle L→ M over
an odd-dimensional manifold, transitive Jacobi structures with background (J,Ψ) coincide
with transitive twisted Jacobi structures (J, Ω̄), where Ψ = dLΩ̄.

Proposition 4.4.13. For any twisted contact structure (H, ψ) on the smooth manifold M ,
there is a canonically associated non-degenerate, and a fortiori transitive Jacobi structure
with background on the quotient line bundle L := TM/H →M .

Proof. Let θ be the canonical projection associated with the considered hyperplane distri-
bution (4.72). Inspired by the pure contact case (see Section 4.2), we introduce the R-linear
map ϕ : X1(M)→ Γ(H∗ ⊗ L), X 7→ ϕX , via

ϕX(Y ) := −〈θ, [X, Y ]〉 − 〈ψ,X ∧ Y 〉, Y ∈ Γ(H). (4.132)

The previous definition is well-pose, and actually ϕ is a first-order differential operator.
Indeed, by direct computation, we get

ϕfX(Y )− fϕX(Y ) = (Y f)〈θ,X〉, f ∈ F(M), X ∈ X1(M), Y ∈ Γ(H),

or, equivalently

ϕfX − fϕX = df |H ⊗ θ. (4.133)

We consider the vector subspace RH of the R-vector space X1(M) defined by

RH := Kerϕ•. (4.134)

We mention here thatRH is not a F(M)-submodule of X1(M) (just as the R-vector subspace
of Reeb vector fields (4.75)). With this preparation at hand, the short exact sequence of
RR-vector spaces

RH
⊆
� X1(M)

ϕ
� Γ (H∗ ⊗ L) (4.135)
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emerges. Due to the fact that

ϕX = Ω[X, X ∈ Γ(H)

it results that the exact sequence (4.135) is split from the right by Ω], i.e.,

ϕ ◦ Ω] = idΓ(H∗⊗L) . (4.136)

This split exhibits the canonical isomorphism of R-vector spaces

X1(M)
'−→ RH ⊕ Γ(H), X

'7→ (X − Ω]ϕX) + Ω]ϕX . (4.137)

Using the projection on the first term in the decomposition (4.137), the linear map θ ∈
Ω(M ;L), which particularly is an R-linear map of R-vector spaces, and invoking the univer-
sality of quotient space, we get the R-linear map that closes the diagram

X1(M)

p1

��

θ // Γ(L)

X•zz
RH

(4.138)

The map
X• : Γ(L) −→ RH ⊂ X1(M), e 7→ Xe (4.139)

is uniquely determined by
〈θ,Xe〉 = e. (4.140)

This is not linear (with respect to the commutative algebra F(M)), but it is a first-order
differential operator between the vector bundles L→M and TM →M

Xfe − fXe = −Ω](df |H ⊗ e), f ∈ F(M), e ∈ Γ(L). (4.141)

As a by-product, the previous result ensures also that

〈{(Xe)x : e ∈ Γ(L)}〉 = TxM, x ∈M. (4.142)

With all these preparations at hand, we are in position to introduce the R-biliniar and
skew-symmetric bracket

{e1, e2} := 〈θ, [Xe1 ,Xe2 ]〉+ 〈ψ,Xe1 ∧ Xe2〉, e1, e2 ∈ Γ(L). (4.143)

By direct computation based on (4.137), (4.140) and (4.141), we can show that (4.143) is a
bi-differential operator

{e1, fe2} = 〈θ, [Xe1 ,Xfe2 ]〉+ 〈ψ,Xe1 ∧ Xfe2〉
= 〈θ,

[
Xe1 , fXe2 − Ω](df |H ⊗ e2)

]
〉+ 〈ψ,Xe1 ∧ (fXe2 − Ω](df |H ⊗ e2))〉

= 〈θ, [Xe1 , fXe2 ]〉+ 〈ψ,Xe1 ∧ fXe2〉+ ϕXe1 (Ω](df |H ⊗ e2))

= f{e1, e2}+ (Xe1f)e2.

If we denote with J := {•, •}, the previous reasoning shows that J ∈ D2L. In addition, due
to

(σ ◦ Ĵ ])(j1e) = Xe, e ∈ Γ(L),

in the light of (4.142), we conclude that J is non-degenerate. Invoking now Proposition
4.4.11, the proof is completed.
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Proposition 4.4.14. Let (J,Ψ) be a Jacobi structure with background on a line bundle
L→M . Then the following conditions are equivalent:

1. there exists a twisted contact structure (H, ψ), and a vector-bundle isomorphism L '
TM/H, such that (J,Ψ = dLΩ̄) is the twisted Jacobi structure canonically associated
with (H, ψ) (according to Proposition 4.4.13),

2. M is odd dimensional and the Jacobi structure with background is transitive,

3. the first-order bi-differential operator Ĵ associated with J (4.58) is non-degenerate.

Proof. The implication 1. ⇒ 2. is immediate from Definition 4.3.3, Remark 4.4.11, and
Proposition 4.4.13.

The equivalence between statements 2. and 3. preceded Remark 4.4.11.
Now we prove that 2. (or, equivalently 3.) implies 1. Let us denote by Ω̄ ∈ Ω2

L the
Atiyah 2-form defined by (4.130). Then, according to Proposition 4.4.11, it results that

Ψ = dLΩ̄.

Further, let us consider the bi-symbol J̃ associated with the considered bi-differential
operator J

J1L
Ĵ] // DL

σ
��

T ∗M ⊗ L

σ∗

OO

J̃] // TM

Since J̃ ∈ Γ(∧2(TM ⊗ L∗)⊗ L) is skew-symmetric and J is non-degenerate, from the com-
mutative diagram, we can extract the following information:

� the kernel of the linear map J̃ ] : T ∗M⊗L→ TM is the (globally trivial) line subbundle
Ker J̃ ] ⊂ T ∗M ⊗ L with a global frame θ ∈ Ω1(M ;L), which is uniquely determined
via

σ∗θ = −Ĵ [1, (4.144)

� the image of J̃ ] : T ∗M ⊗ L→ TM , H := Im J̃ ], is a hyperplane distribution.

The previous ingredients H and θ are related via

H = Ker θ = σ(〈1〉Ω̄). (4.145)

Indeed, for any η ∈ Ω1(M ;L), the skew-symmetry of J̃ leads successively to

〈θ, J̃ ]η〉 = 〈η ∧ θ, J̃〉 = −〈η, J̃ ]θ〉 = 0.

Related to the second equality in (4.145), it comes immediate from Definitions (4.130) and
(4.144). If we denote by ωθ the curvature corresponding to θ, ωθ ∈ Γ(∧2H ⊗ L), which is
uniquely determined by

〈ωθ, X ∧ Y 〉 := 〈θ, [X, Y ]〉, X, Y ∈ Γ(H),
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then for any two derivations �1,2 ∈ Γ(〈1〉Ω̄) = Γ(σ−1(H)), by direct computation we get

〈dL(σ∗θ),�1 ∧�2〉 = �1〈σ∗θ,�2〉 −�2〈σ∗θ,�1〉 − 〈σ∗θ, [�1,�2]〉
= �1〈θ, σ�2〉 −�2〈θ, σ�1〉 − 〈θ, [σ�1 , σ�2 ]〉
= −〈ωθ, σ�1 ∧ σ�2〉. (4.146)

Further, if we denote by ψ, the L-valued 2-form, ψ ∈ Ω2(M ;L), which is uniquely (in the
light of the injectivity of σ∗) defined by

(∧2σ)∗ψ = −ι1Ψ = −ι1dLΩ̄,

then, using the contracting homotopy ι1 (see second point in Remark 4.1.6), it results

Ω̄ = dLι1Ω̄ + ι1dLΩ̄ = dL(σ∗θ)− (∧2σ)∗ψ (4.147)

Now, putting together the results (4.146), (4.147), and the fact that symbol map σ : DL→
TM induces a vector bundle isomorphism

〈1〉Ω̄

〈1〉
'−→ H

we conclude that Ω := ωθ + ψ|H ∈ Γ(∧2H ⊗ L) is non-degenerate, i.e., (H, ψ) is a twisted
contact structure.

It remains to show that the starting non-degenerate Jacobi structure with background
(J,Ψ) and the Jacobi structure with background associated with (H, ψ) (see Proposition
4.4.13) coincides.

Notice that, in the current situation, for any section in the line bundle e ∈ Γ(L), there
exist two, apparently different, associated Hamiltonian vector fields:

� the Hamiltonian vector field Xe due to the structure (J,Ψ) (see (4.63)), and

� the Hamiltonian vector field Xe generated by the structure (H, ψ) (see (4.139)).

As a preliminary step, we initially prove that the two Hamiltonian vector fields are, in fact,
identical. First, we show that for any e ∈ Γ(L), Xe is a Reeb vector field, i.e., it belongs
to the vector subspace (4.134). Indeed, let Y be a section in the hyperplane distribution,
Y ∈ Γ(H). It results that there exists � ∈ 〈1〉Ω̄ such that Y = σ�. By direct computation,
we successively infer

ϕXe = −〈θ, [Xe, Y ]〉 − 〈ψ,Xe ∧ Y 〉
= −〈θ, [σ4e , σ�]〉 − ψ, σ4e ∧ σ�〉
= −〈σ∗θ, [4e,�]〉 − 〈(∧2σ)∗ψ,4e ∧�〉
= 〈Ω̄,1 ∧ [4e,�]〉+ 〈dLΩ̄,1 ∧4e ∧�〉
= 〈Ω̄,4e ∧�〉+ �〈Ω̄,1 ∧4e〉
= −�e+ �e = 0.
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Second, we prove that the Hamiltonian vector field enjoys (4.140). Using the same pedestrian
procedure, we derive

〈θ,Xe〉 = 〈σ∗θ,4e〉 = 〈σ∗θ, Ĵ ](j1e)〉 = 〈j1e, Ĵ ]Ω̄[
1〉 = e, e ∈ Γ(L).

The previous argumentation prove that the specified Hamiltonian vector fields coincide, i.e.,

Xe = Xe, e ∈ Γ(L). (4.148)

We close the proof by showing that the brackets associated with (J,Ψ), and (H, ψ), given by
(4.109), and (4.143) respectively, coincide. Indeed, starting from (4.109) and using (4.58),
(4.130), (4.147), and (4.148), we successively get

{e1, e2} = 〈j1e1 ∧ j1e2, Ĵ〉 = 〈Ω̄,4e1 ∧4e2〉 = 〈dL(σ∗θ)− (∧2σ)∗ψ,4e1 ∧4e2〉
= 4e1〈σ∗θ,4e2〉 − 4e2〈σ∗θ,4e1〉 − 〈σ∗θ, [4e1 ,4e2 ]〉 − 〈ψ,Xe1 ∧Xe2〉
= 4e1〈θ,Xe2〉 − 4e2〈θ,Xe1〉 − 〈θ, [Xe1 , Xe2 ]〉 − 〈ψ,Xe1 ∧Xe2〉
= 2{e1, e2} − 〈θ, [Xe1 , Xe2 ]〉 − 〈ψ,Xe1 ∧Xe2〉,

i.e.
{e1, e2} = 〈θ, [Xe1 , Xe2 ]〉+ 〈ψ,Xe1 ∧Xe2〉

which concludes the proof.
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[13] A. Chatzistavrakidis, G. Šimunić, Gauged sigma-models with nonclosed 3-form and
twisted Jacobi structures, J. High Energy Phys. 2020, 173 (2020)

[14] E.M. Cioroianu, C. Vizman, A linear algebraic setting for Jacobi structures, Journal of
Geometry and Physics 159 (2021) 103904

109



110 BIBLIOGRAPHY

[15] E.M. Cioroianu, L. Vitagliano, A.G. Tortorella, C. Vizman, The linear algebra of (Dirac-
) Jacobi geometry, The West University of Timişoara Publishing House, Timişoara,
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