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Doctorand:
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Chapter 1

Introduction, preliminaries and main

results

The general aim of the present doctoral thesis is to strengthen the role of Convex Functions Theory

(pointed out by majorization theory), as an important link between Mathematics, Engineering and

Computer Science. We also emphasize the powerful interdisciplinary role of convexity, having as main

tools optimization ideas and methods combined in various ways.

The main topic we are interested in this thesis is given by the link between convex analysis and

majorization theory, described in terms of new concepts and refined majorization convex type inequal-

ities. More precisely, we present Jensen’s, Hardy-Littlewood-Polya’s and Sherman’s type inequalities

for new type of weakly or strongly convex functions, perturbed by homogeneous symmetric polynomi-

als of even degree. We manage to prove that the behaviour of homogeneous symmetric polynomials

is similar to the one of euclidean norms. Moreover, the main novelty here is given by the possibility

to extend all the above mentioned inequalities for nonpositive weights in Rn, or even in spaces with

curved geometry. These extensions in more general spaces can be done via majorization arguments

and based on the extension of the barycenter concept for Steffensen-Popoviciu measures (where the

weights are allowed to be nonpositive).

We consider that the research topic of this doctoral thesis becomes over the years an important field

of research, due to the necessity to understand and optimize different processes/problems which use

convex analysis tools, in order to be applied in different areas of research [28, 54, 68, 116]. In other

words, our particular aim is to consolidate a theoretical foundation for studying optimization problems

from an applied point of view, such as modeling communication networks and design of communication

systems.

The concept of majorization appears in 1905, when Max Lorenz propose a graphical way to model

the social differences in a finite population. Later on, Dalton (1920) and Hardy-Littlewood-Polya

(1927, 1934), reveal some optimization properties, which led to the notion of Schur-convex function.

Applications of majorization in 4G communications networks, are related to data transmission rates

with huge dimensions, where the interferences between different links create a strangulations of data

transmission rates. An important amelioration was obtained in [11, 67], where the optimal power

distribution is studied as a nonlinear optimization problem, non-convex with constraints. The problem

1
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was solved by the identification of a Schur-convex structure in the objective function. It can be shown

that the optimal power allocation is binary, in a sense that, the data are sent with maximal power or

the data transmission is not allowed (which goes back to switching or bang-bang controls strategy).

These results obtained in the field of convex analysis are focused on majorization inequalities and can

be used to obtain new optimal operating principles for some communications devices as intelligent

traffic lights.

The second approach deals with weakly/strongly majorization/convexity concepts in the context of

metric spaces with global non-positive curvature (namely global NPC spaces). Besides Hilbert spaces

and manifolds, other important examples of global NPC spaces are the Bruhat-Tits buildings [17, 163]

(in particular, the trees). It is important to mention that, in [119, 121, 126], Ky-Fan’s inequality,

Schauder’s and Schaeffer’s fixed point theorems and Hardy-Littlewood-Polya’s majorization theorem

have been extended in the context of global NPC spaces [17, 28, 80]. A new type of weak majorization

was also discussed in [150].

The subject of majorization in global NPC spaces was successfully studied using some ideas inspired

from articles [26, 92, 98, 111]. Applying different kind of majorization concepts (see [150]), for instance,

to the trees, we could obtain a feasible model for the optimal distribution in high performances

communication networks.

Other significant idea in this area presented in this thesis, is given by the possibility to introduce a

new weaker concept of ”point of convexity with nonpositive weights” , inspired by the notion of point

of convexity introduced in [118]. Early references can be found in [47, 52, 59, 114, 127, 138, 139, 161].

Our aim is to use the notion of ”point of convexity with nonpositive weights” in such a way to prove

different type of convex inequalities for weaker assumptions, even in the context of global NPC spaces.

Finally, note that some weaker or other generalized convexities were successfully used in the study of

existence and uniqueness of solutions of partial differential equations. As applications, we mention

that in order to establish a sufficient condition for the existence of finite time blow-up solutions for an

evolutionary problem, arising naturally in mechanics, biology and population dynamics, in [122, 123],

we have successfully used a class of generalized convex functions. See [21, 34, 35, 38, 59].

In the following sentences (of Chapter I) we briefly present the content of each chapter, where we

announce the main results of this thesis. Moreover, we are also focused to give some theoretical

background, in order to offer a general view and a good understanding of the whole thesis.

The first part of Chapter II is an introductory one and is mainly inspired from [68, 69, 104]. In this

part, we present some notions related to convexity, majorization theory and inequalities associated to

it. In fact, we recall the main properties of the relation of majorization, which was introduced by G.

H . Hardy, J. E. Littlewood and G. Pólya [69] in 1929, and was popularized by their well-known book

on inequalities [68]. For other details we also refer to the recent book by A. W. Marshall, I. Olkin and

B. Arnold [104].

The second part of Chapter II is based on the paper G. M. Lăchescu, M. Malin and I. Rovenţa, New

Versions of Uniformly Convex Functions via Quadratic Complete Homogeneous Symmetric Polynomi-

als, Mediterranean Journal of Mathematics 20, 279 (2023).

In this part we present new versions of uniformly convex functions, namely hd strongly/weaker

convex functions. In other words, we introduce stronger and weaker versions of uniformly convexity

for which we recover well-known convex type inequalities such as: Jensen’s, Hardy-Littlewood-Polya’s
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and Popoviciu’s inequalities. Sherman’s and Ingham’s type inequalities are also discussed.

More precisely, the topic we address is related to the study of a new family of convex functions which

is based on the positivity property of complete homogeneous symmetric polynomials with even degree.

The positivity of symmetric polynomial functions was firstly studied in an old paper of Hunter [74].

Later on, in [165] a different way to establish the positivity of such polynomials was considered. In ad-

dition, two different ideas are presented in [153], based on a Schur-convexity argument or on a method

with divided differences. Note also that, the previous strategies was used to obtain fine estimates on

the norms on complex matrices induced by complete homogeneous symmetric polynomials. See [4]

and [37].

The family of complete homogeneous symmetric polynomials with n real variables x1, . . . , xn and

degree d ∈ N is given as follows

h0(x1, . . . , xn) = 1,

hd(x1, . . . , xn) :=
∑

1≤i1≤···≤id≤n
xi1 · · ·xid (d ≥ 1).

The main strategy used to prove the positivity of hd, for all even degrees d ≥ 2, consists of using

Schur-convexity and majorization arguments. Note that, the concept of majorization is a powerful

topic of research with several interesting applications: a necessary and sufficient condition for a linear

map to preserve group majorizations [131]; properties on superquadratic functions related to Jensen–

Steffensen’s inequality [1]; other majorization properties [83, 132]. Moreover, we notice that the

possibility to define the concept of majorization into the spaces of curved geometry was confirmed in

[126]. More results on this topic can be found in [112, 113, 114, 117, 124].

In order to present the current settings we address in this part of the thesis, let us introduce the

concepts of stronger and weaker hd convexity for functions defined on Rn. A positivity result given in

[153] asserts that: if d ≥ 2 is an even natural index, then

hd(x1, x2, . . . , xn) ≥ 0 (x1, . . . , xn ∈ R). (1.0.1)

Using ideas from (1.0.1) we define a new concept of convex function, as a perturbed of convex function

with a complete homogeneous symmetric polynomial.

Definition 1.0.1. Let C > 0 and let d ≥ 2 be an even natural number. A function f : Rn → R
is said to be hd strongly convex with modulus C if the function f(·) − C hd(·) is convex. Similarly, a

function f : Rn → R is called hd weakly convex with modulus C if the function f(·)+C hd(·) is convex.

In order to motivate the concept of h2 strongly/weakly convex function we recall the related notion

of uniformly convex function.

Definition 1.0.2. Let C > 0. A function f : Rn → R is said to be uniformly convex with modulus

C if f(·)− C ‖·‖2 is convex. Equivalently, the function f is uniformly convex with modulus C if and

only if the following inequality holds

f((1− λ)x + λy)) ≤ (1− λ)f(x) + λf(y)− Cλ(1− λ) ‖x− y‖2 , (1.0.2)

for all x,y ∈ Rn and λ ∈ [0, 1].
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It is natural to show that (1.0.2) holds similarly, even in the context of h2 strongly convexity. More-

over, our objective is to study the general and difficult case, i.e. hd strongly convexity, for any even

natural number d ≥ 2. We also use fine estimates in order to get hd versions of Jensen’s, Hardy-

Littlewood-Polya’s and Popoviciu’s inequalities. Other classical inequalities are also obtained, which

certifies that the family of hd strongly convex functions lead to new ideas of further research. We

strongly consider that the new concept and results presented in this part of this chapter can be used

to establish connections and further applications related to other important scientific achievements in

literature (see [2, 3, 15, 96, 133, 169]).

More precisely, we obtain an inequality related to (1.0.2), in the case of h2 strongly convex functions.

Proposition 1.0.1. Let C > 0. Then, the function f : Rn → R is h2 strongly convex with modulus C

if and only if

f((1− λ)x + λy)) ≤ (1− λ)f(x) + λf(y)− Cλ(1− λ)h2(x− y), (1.0.3)

for all x,y ∈ Rn and λ ∈ [0, 1].

In the general case, for any even natural number d ≥ 2, we get a nice extension of Proposition 1.0.1.

Theorem 1.0.1. Let C > 0 and let d ≥ 2 be an even natural number. Then, the function f : Rn → R
is hd strongly convex with modulus C > 0 if and only if

f((1− λ)x + λy)) ≤ (1− λ)f(x) + λf(y)− Cλ
d
2 (1− λ)

d
2hd(x− y), (1.0.4)

for all x,y ∈ Rn and λ ∈ [0, 1].

Moreover, for each x,y ∈ Rn and λ ∈ [0, 1] we have

hd((1− λ)x + λy)− (1− λ)hd(x)− λhd(y) ≤ −λ
d
2 (1− λ)

d
2hd(x− y). (1.0.5)

It is worth mentioning that, even if hd polynomials cannot itself induce a norm (for example, in

majorization settings, we have that, for any two vectors satisfying x ≺ y, h2(y) ≥ h2(x) + h2(y − x),

see Lemma 2.2.1) we can introduce some polynomial norms. That means to introduce the norms that

are the dth root of a hd polynomials. For more details, see the last chapter of this doctoral thesis,

devoted to some perspectives.

For the convenience of the reader, in the following sentences we present some basic theoretical facts

about strongly convex functions with modulus C > 0. Using our estimates from (1.0.1) and (1.0.3) we

recover some well-known classical results within uniform convex functions theory. More details can be

found in [97].

Theorem 1.0.2. Let C > 0, d ≥ 2 an even natural number and let f : Ω→ R be a hd strongly convex

with modulus C defined on a convex set Ω ⊆ Rn. Then the following statements hold true:

(i) If Ω is an open set, then f is a continuous function on Ω.

(ii) Any local minimizer of f is a global minimum for f .

(iii) Moreover, the global minimizer of f is unique.
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In a similar way, we extend the notion of elliptic differentiable functions.

Definition 1.0.3. We say that a function J : Ω ⊂ Rn → R is elliptic (α-elliptic) if it is differentiable

on Ω and there exists an α > 0 such that

〈∇J(x)−∇J(y),x− y〉 ≥ α‖x− y‖2 (x,y ∈ Ω). (1.0.6)

Definition 1.0.4. We say that a function J : Ω ⊂ Rn → R is h2-elliptic if it is differentiable on Ω

with modulus C if

〈∇J(x)−∇J(y),x− y〉 ≥ Ch2(x− y) (x,y ∈ Ω). (1.0.7)

By considering the convex function g : Ω → R, where g(x) = J(x) − Ch2(x), and using in addition

the well-known convex inequality

g(y) ≥ g(x) + 〈∇g(x),y − x〉 (x,y ∈ Ω),

we can get easily the following two results.

Theorem 1.0.3. Let J : Ω→ R be a differentiable function defined on the convex set Ω ⊆ Rn. Then

the following affirmations are equivalent:

(i) J is h2 strongly convex with modulus C.

(ii) The following inequality holds true

J(x)− J(y) ≥ 〈∇J(y),x− y〉+ Ch2(x− y) (x,y ∈ Ω). (1.0.8)

(iii) J is h2-elliptic on Ω with modulus 2C, i.e.

〈∇J(x)−∇J(y),x− y〉 ≥ 2Ch2(x− y) (x,y ∈ Ω).

Theorem 1.0.4. If U ⊆ Rn is a nonempty, closed and convex set, and J is h2 strongly convex with

modulus C > 0, then there exists an unique x ∈ U such that

J(x) = min
y∈U

J(y). (1.0.9)

On the other hand, it is natural to present some remarks concerning the possibility of defining a

scalar product in terms of hd symmetric polynomials. Thus, defining the map 〈·, ·〉h : Rn × Rn → R
as follows

〈x,y〉h =
h2(x + y)− h2(x− y)

4
(x,y ∈ Rn), (1.0.10)

a straightforward computation gives

〈x,y〉h = 〈x,y〉+
1

2

(
n∑
i=1

xi

n∑
i=1

yi −
n∑
i=1

xiyi

)
,

where 〈x,y〉 =

n∑
i=1

xiyi denotes the usual scalar product in Rn.
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Notice that 〈x,y〉h satisfies the properties needed for a scalar product, i.e.

〈x,y〉h = 〈y,x〉h (x,y ∈ Rn),

〈αx,y〉h = α〈x,y〉h (x,y ∈ Rn, α ∈ R),

〈x + z,y〉h = 〈x,y〉h + 〈z,y〉h (x,y, z ∈ Rn),

〈x,x〉h = h2(x) ≥ 0 (x ∈ Rn).

Finally, if h2(x) = 0 we have

h2(x) =
1

2
(x1 + · · ·+ xn)2 +

1

2
(x2

1 + · · ·+ x2
n) = 0,

which gives x = 0n.

Hence, 〈·, ·〉h is a scalar product and a distance (see [97]) can be given by

d2(x,y) =
√
〈x− y,x− y〉h (x,y ∈ Rn). (1.0.11)

We end the resume of this part of Chapter II by presenting an inequality of Jensen’s type in the case

of hd strongly convex functions, for any even natural number d ≥ 2.

Proposition 1.0.2. (Jensen’s type inequality for hd strongly convexity) Let C > 0 and let d ≥ 2

be an even natural number. If f : I → R, I ⊂ R is a given function such that F (x1, . . . , xn) =

f(x1) + · · · + f(xn) is hd strongly convex with modulus C on In then, for all x1, . . . , xn ∈ I, the

following inequality holds

f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n

− C 1

n

(
n+ d− 1

d

)((
x1 + · · ·+ xn

n

)d
− xd1 + · · ·+ xdn

n

)
.

(1.0.12)

In order to compare Jensen’s type inequalities for hd strongly convex functions and uniformly convex

functions we present the following result (which can be seen as a consequence of the results from [170]).

Proposition 1.0.3. (Jensen’s type inequality for uniform convexity) Let C > 0 and let f : I → R,

I ⊂ R be such that F : In → R, defined as F (x1, . . . , xn) = f(x1) + · · · + f(xn), is uniformly convex

with modulus C. Then, for all x1, . . . , xn ∈ I the following inequality holds

f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
− C

n

∑
1≤i<j≤n

(xi − xj)2. (1.0.13)

Remark 1. Let C > 0 and let f : I → R, I ⊂ R such that F : In → R, defined as F (x1, . . . , xn) =

f(x1) + · · ·+ f(xn), is h2 strongly convex with modulus C. Then, for all x1, . . . , xn ∈ I, the following

inequality holds

f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
− Cn+ 1

2n2

∑
1≤i<j≤n

(xi − xj)2. (1.0.14)

Note that the two constants appearing in front of right hand error term in (1.0.13) and (1.0.14) are

different and depend on n. Hence, we cannot move from h2 strongly convex case to the uniformly

convex case, by only changing the modulus.
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In the following we present several majorization type inequalities in the context of hd strongly convex

functions. More precisely, we are dealing with extensions of Hardy-Littlewood-Polya’s and Popoviciu’s

inequalities in the case of our new class of convex functions.

Let us consider x↓ and y↓ two vectors with the same entries as x, respectively y, expressed in

decreasing order, as

x↓1 ≥ · · · ≥ x
↓
n, y

↓
1 ≥ · · · ≥ y

↓
n.

We say that, the vector x is majorized by y (abbreviated, x ≺ y) if

k∑
i=1

x↓i ≤
k∑
i=1

y↓i (1 ≤ k ≤ n− 1),

n∑
i=1

x↓i =
n∑
i=1

y↓i .

(1.0.15)

More details and applications concerning the majorization theory can be found in [104]. We refer to

the monotonicity with respect to the majorization order, the so called Schur-convex property, which

has been introduced by I. Schur in 1923.

Definition 1.0.5. The function f : A → R, where A is a symmetric subset of Rn, is called Schur-

convex if x ≺ y implies f(x) ≤ f(y).

A simple computation tool (see, for instance, [104]) which is used to study the Schur-convexity

property of a function is given as follows. For any symmetric function f(x) = f(x1, x2, . . . , xn) having

continuous partial derivatives on In = I × I × ...× I, the Schur-convexity property is reduced to check

the following inequality

(xi − xj)
(
∂f

∂xi
− ∂f

∂xj

)
≥ 0 (1 ≤ i, j ≤ n, xi, xj ∈ I).

We introduce now the notions of hd strongly Schur convexity and uniformly Schur convexity.

Definition 1.0.6. Let C > 0. A function f : In → R is said to be hd strongly Schur-convex with

modulus C if the function f(·)− C hd (·) is Schur-convex.

We first remark that a similar Jensen’s type inequalities is obtained by using this time majorization

arguments obtaining different constants in front of the right hand error term.

Proposition 1.0.4. (Jensen’s type inequality via Hardy-Littlewood-Pólya’s inequality) Let C > 0 and

let f : I → R, I ⊂ R be a function such that F (x1, . . . , xn) = f(x1) + · · ·+ f(xn) is hd strongly Schur

convex with modulus C on In. Then, for all x1, . . . , xn ∈ I the following inequality holds

f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
− C

2n2

∑
1≤i<j≤n

(xi − xj)2. (1.0.16)

We are able now to present Hardy-Littlewood-Pólya’s majorization theorem for hd strongly convexity

case.
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Theorem 1.0.5. (Hardy-Littlewood-Pólya’s inequality for strongly hd functions) Let C > 0 and let

f : I → R, I ⊂ R be a function such that F (x1, . . . , xn) = f(x1) + · · · + f(xn) is hd strongly Schur

convex with modulus C on In. If x ≺ y on In the following inequality holds

n∑
i=1

f(yi) ≥
n∑
i=1

f(xi) + Ch2(y − x). (1.0.17)

Now, we can present some natural extensions of Popoviciu’s inequalities for h2 strongly convex

functions.

Proposition 1.0.5. (Popoviciu’s type inequality for h2 strongly convexity) Let C > 0 and let f : I →
R, I ⊂ R be a function such that F (x1, . . . , xn) = f(x1) + · · ·+ f(xn) is hd strongly Schur convex with

modulus C on In. Then, for all x, y, z ∈ I the following inequality holds

f(x) + f(y) + f(z)

3
+ f

(
x+ y + x

3

)
≥ 2

3

(
f

(
x+ y

2

)
+ f

(
x+ z

2

)
+ f

(
y + z

2

))
(1.0.18)

+
C

36

(
(x− y)2 + (y − z)2 + (x− z)2

)
.

The third part of Chapter II is based on the paper G. M. Lăchescu, and I. Rovenţa, The Hardy-

Littlewood-Pólya inequality of majorization in the context of ω-m-star-convex functions, Aequationes

Mathematicae 97 (2023), 523–535.

In this part, we extend the Hardy-Littlewood-Pólya inequality of majorization for ω-m-star-convex

functions in the framework of ordered Banach spaces. Several open problems which seem to be of

interest for further extensions of the Hardy-Littlewood-Pólya inequality are also included.

Notice that, in the early 1950s, the Hardy-Littlewood-Pólya inequality was extended by Sherman

[160] to the case of continuous convex functions of a vector variable by using a much broader concept

of majorization, based on matrices stochastic on lines. The full details can be found in [114], Theorem

4.7.3, p. 219. Over the years, many other generalizations in the same vein have been published. See,

for example, [31, 117, 118, 124, 125, 126, 133].

As was noticed in [112] and [113], the Hardy-Littlewood-Pólya inequality of majorization can be

extended to the framework of convex functions defined on ordered Banach spaces. Our aim is to prove

that the same works for the larger class of ω-m-star-convex functions.

We also present different types of majorization relations in ordered Banach spaces. The corresponding

extensions of the Hardy-Littlewood-Pólya inequality constitute another the objective. We end with

mentioning several open problems which seem to be of interest for further extensions of the Hardy-

Littlewood-Pólya inequality.

Let us consider E a Banach space and C a convex subset of it.

Definition 1.0.7. Let m be a real parameter belonging to the interval (0, 1]. A function Φ : C → R
is said to be a perturbed m-star-convex function with modulus ω : [0,∞) → R (abbreviated as ω-m-

star-convex function) if it fulfils an estimate of the form

Φ((1− λ)x + λmy) ≤ (1− λ)Φ(x) +mλΦ(y)−mλ(1− λ)ω (‖x− y‖) ,
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for all x,y ∈ C and λ ∈ (0, 1).

The ω-m-star-convex functions associated to an identically zero modulus will be called m-star-convex.

They satisfy the inequality

Φ((1− λ)x + λmy) ≤ (1− λ)Φ(x) +mλΦ(y),

for all x,y ∈ C and λ ∈ (0, 1).

Notice that the usual convex functions represent the particular case of m-star-convex functions where

m = 1. On the other hand every convex function is m-star-convex (for every m ∈ (0, 1]) if 0 ∈ C and

Φ(0) ≤ 0. Every ω-m-star-convex function associated to a modulus ω ≥ 0 is necessarily m-star-

convex. The ω-m-star-convex functions whose moduli ω are strictly positive except at the origin

(where ω(0) = 0) are usually called uniformly m-star-convex. In that case the definitory inequality is

strict whenever x 6= y and λ ∈ (0, 1).

The theory of m-star-convex functions was initiated by Toader [166], who considered only the case

of functions defined on real intervals. For additional results in the same setting see [108] and the

references therein. A simple example of a (16/17)-star-convex function which is not convex is

f : [0,∞)→ R, f(x) = x4 − 5x3 + 9x2 − 5x. (1.0.19)

Under the presence of Gâteaux differentiability, ω-m-star-convex functions generate specific gradient

inequalities that play a prominent role in our generalization of the Hardy-Littlewood-Pólya inequality

of majorization.

Lemma 1.0.1. Suppose also that C is an open convex subset of the Banach space E and Φ : C → R
is a function both Gâteaux differentiable and ω-m-star-convex. Then

mΦ(y) ≥ Φ(x) + dΦ(x)(my − x) +mω (‖x− y‖) , (1.0.20)

for all points x,y ∈ C.

Remark 2. Lemma 1.0.1 shows that the critical points x of the differentiable ω-m-star–convex func-

tions are those for which ω ≥ 0 fulfill the property

m inf
y∈C

Φ(y) ≥ Φ(x).

Unlike the case of convex functions of one real variable, when the isotonicity of the differential is

automatic, for several variables, this is not necessarily true in the case of a differentiable convex

function of a vector variable. See [112, Remark 4].

In this part of the doctoral thesis we are dealing with functions defined on ordered Banach spaces,

that is, on real Banach spaces endowed with order relations ≤ that make them ordered vector spaces

such that positive cones are closed and

0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖ .

The Euclidean N -dimensional space RN has a natural structure of an ordered Banach space associ-

ated to coordinatewise ordering. The usual sequence spaces c0, c, `
p (for p ∈ [1,∞]) and the function
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spaces C(K) (for K a compact Hausdorff space) and Lp (µ) (for 1 ≤ p ≤ ∞ and µ a σ-additive posi-

tive measure) are also examples of ordered Banach spaces (with respect to coordinatewise/pointwise

ordering and natural norms).

A map T : E → F between two ordered vector spaces is called isotone (or order preserving) if

x ≤ y in E implies T (x) ≤ T (y) in F

and antitone (or order reversing) if −T is isotone. When T is a linear operator, T is isotone if and

only if T maps positive elements into positive elements (abbreviated, T ≥ 0).

For basic informations on ordered Banach spaces see [113]. The interested reader may also consult

the classical books of Aliprantis and Tourky [9] and Meyer-Nieberg [106]. As was noticed by Amann

[10], Proposition 3.2, p. 184, the Gâteaux differentiability offers a convenient way to recognize the

property of isotonicity of functions acting on ordered Banach spaces: the positivity of the differential.

We state here his result (following the version given in [112], Lemma 4):

Lemma 1.0.2. Suppose that E and F are two ordered Banach spaces, C is a convex subset of E

with nonempty interior intC and Φ : C → F is a convex function, continuous on C and Gâteaux

differentiable on intC. Then Φ is isotone on C if and only if Φ′(a) ≥ 0 for all a ∈ intC.

Remark 3. If the ordered Banach space E has finite dimension, then the statement of Lemma 1.0.2

remains valid when the interior of C is replaced by the relative interior of C. See [114], Exercise 6,

p. 81.

We can now introduce the concept of majorization in the framework of ordered Banach spaces. Since

in an ordered Banach space not every string of elements admits a decreasing rearrangement, we will

concentrate on the case of pairs of discrete probability measures at least one of which is supported by

a monotone string of points. The case where the support of the left measure consists of a decreasing

string is defined as follows.

Definition 1.0.8. Suppose that
∑N

k=1 λkδxk and
∑N

k=1 λkδyk are two discrete Borel probability mea-

sures that act on the ordered Banach space E and m ∈ (0, 1] is a parameter. We say that
∑N

k=1 λkδxk
is weakly mL↓-majorized by

∑N
k=1 λkδyk (denoted

∑N
k=1 λkδxk ≺wmL↓

∑N
k=1 λkδyk) if the left hand

measure is supported by a decreasing string of points

x1 ≥ · · · ≥ xN (1.0.21)

and
n∑
k=1

λkxk ≤
n∑
k=1

λkmyk for all n ∈ {1, . . . , N}. (1.0.22)

We say that
∑N

k=1 λkδxk is mL↓-majorized by
∑N

k=1 λkδyk (denoted∑N
k=1 λkδxk ≺mL↓

∑N
k=1 λkδyk) if in addition

N∑
k=1

λkxk =
N∑
k=1

λkmyk. (1.0.23)
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Notice that the context of Definition 1.0.8 makes it necessary that all the weights λ1, . . . , λN belong to

(0, 1] and
∑N

k=1 λk = 1. The three conditions (1.0.21), (1.0.22) and (1.0.23) imply myN ≤ xN ≤ x1 ≤
my1 but not the ordering y1 ≥ · · · ≥ yN . For example, when N = 3, one may consider the case where

m = 1, λ1 = λ2 = λ3 = 1/3, x1 = x2 = x3 = x

and

y1 = x, y2 = x + z, y3 = x− z,

z being any positive element.

Our objective is to consider the corresponding extensions of the Hardy-Littlewood-Pólya inequality

of majorization for ≺wmL↓ and≺mL↓ . Moreover, we also present also a Sherman type inequality. The

proof of the following theorem is inspired by the techniques successfully used in [101] and [112].

Theorem 1.0.6. Suppose that
∑N

k=1 λkδxk and
∑N

k=1 λkδyk are two discrete probability measures

whose supports are included in an open convex subset C of the ordered Banach space E. If
∑N

k=1 λkδxk ≺mL↓∑N
k=1 λkδyk , then

m

N∑
k=1

λkΦ(yk) ≥
N∑
k=1

λkΦ(xk) +

N∑
k=1

λkω(‖xk − yk‖), (1.0.24)

for every Gâteaux differentiable ω-m-star-convex function Φ : C → F whose differential is isotone and

satisfies the hypotheses of Lemma 1.0.1.

The conclusion (1.0.24) still works under the weaker hypothesis
∑N

k=1 λkδxk ≺wmL↓
∑N

k=1 λkδyk ,

provided that Φ is also an isotone function.

The last part of Chapter II is based on the paper G. M. Lăchescu, M. Malin, and I. Rovenţa, Convex

type inequalities with nonpositive weights, (2024), submitted for publication.

The weighted concept of majorization between two vectors u = (u1, . . . , ul) ∈ I l, v = (v1, . . . , vm) ∈
Im with nonnegative weights a = (a1, . . . , al) ∈ [0,∞)l and b = (b1, . . . , bm) ∈ [0,∞)m, where I is an

interval in R and m, l ≥ 2, has been defined in S. Sherman [160]. The concept of weighted majorization

is defined by assuming the existence of a columns stochastic matrix A = (αij) ∈Mlm(R), i.e. a matrix

with nonnegative entries and columns sums equal to 1, such that

bj =
l∑

i=1

aiαji, (j = 1, . . . ,m), (1.0.25)

ui =

m∑
j=1

vjαji, (i = 1, . . . , l). (1.0.26)

Under conditions (1.0.25)− (1.0.26) it is proved that, the following inequality

l∑
i=1

aif(ui) ≤
m∑
j=1

bjf(vj)

holds for every convex function f : I → R. See [160]. We can write conditions (1.0.25) − (1.0.26) in

the matrix form

b = aAT and u = vA.
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We write

(u,a) ≺ (v,b)

and say that a pair (u,a) is weighted majorized by (v,b) if (1.0.25) − (1.0.26) are satisfied for some

columns stochastic matrix A. Note that, in the case l = 1 and b = [1] we deduce Jensen’s inequality.

When m = l and all weights ai and bj are equal to 1/m, the condition (1.0.25) assures the stochasticity

on rows, so in that case we deal with doubly stochastic matrices.

Since all these above inequalities are dealing with positive weights the study of the case of nonpositive

weights is very challenging and this is our next important objective in this thesis. In this context we

recall one of the first relevant step, the so called Jensen Steffensen inequality. We refer to [115] for the

following result.

Theorem 1.0.7. Let xn ≤ xn−1 ≤ · · · ≤ x1 be points in [a, b] and let p1, . . . , pn be real numbers such

that the partial sums Sk =
∑k

i=1 pi verify the relations

0 ≤ Sk ≤ Sn and Sn > 0.

Then for every convex functions f : [a, b]→ R we have the inequality

f

(
1

Sn

n∑
k=1

pkxk

)
≤ 1

Sn

n∑
k=1

pkf(xk).

Our next aim is to present new extensions of the above inequality for the case of nonpositive weights.

More precisely, we try to extend Theorem 1.0.7 in the framework of Rn and then to derive Sherman

and Jensen Steffensen’s type inequalities for perturbed convex functions with complete homogeneous

symmetric polynomials. Our strategy can be also adapted to more general spaces, not only in Rn, but

also in spaces with curved geometry.

Inspired from [115] we shall use the following notation related to z1, . . . , zm ∈ Rn and p1, . . . , pm ∈ R:

z̄ = p1z1 + · · ·+ pmzm, (1.0.27)

Pk = p1 + · · ·+ pk (k ∈ {1, 2, . . . ,m}) ,

P̄k = pk + · · ·+ pm (k ∈ {1, 2, . . . ,m}) .

Definition 1.0.9. We say that a sequence z1, . . . , zm ∈ Rn is monotonic decreasing with respect to

majorization relation iff the following relations hold

zm ≺ zm−1 ≺ · · · ≺ z2 ≺ z1. (1.0.28)

We are now in position to present the extension of Jensen-Steffensen’s type inequality in Rn.

Theorem 1.0.8. Let I be an interval in R and m, n ≥ 1. If f : In → R is a convex function invariant

under permutation of coordinates, then for every z1, . . . , zm ∈ In, which is monotonic decreasing

with respect to majorization relation, and every real m-tuple p = (p1, . . . , pm) such that, for every

i ∈ {1, 2, . . . ,m} we have

0 ≤ Pi ≤ Pm = 1,

then the following inequality holds

f

(
m∑
i=1

pizi

)
≤

m∑
i=1

pif (zi) .
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For the convenience of the reader we also present the case of increasing sequences with respect to the

majorization relation.

Theorem 1.0.9. If f : In → R is a convex function invariant under permutation of coordinates, then

for every z1, . . . , zm ∈ In, which is monotonic increasing with respect to majorization relation, and

every real m-tuple p = (p1, . . . , pm) such that, for every i ∈ {1, 2, . . . ,m} we have

0 ≤ Pi ≤ Pm = 1,

then the following inequality holds

f

(
m∑
i=1

pizi

)
≤

m∑
i=1

pif (zi) .

We can now develop the previous results for the case of nonpositive weights.

The first step is introduce the weighted concept of majorization between two n-tuples x = (x1, . . . , xl),

y = (y1, . . . , ym), where z1, . . . , zl ∈ In, y1, . . . ,ym ∈ In, with real weights a = (a1, . . . , al) ∈ Rl (which

can be nonpositive) and b = (b1, . . . , bm) ∈ [0,∞)m, where I is an interval in R and m, l ≥ 2.

We define the concept of weighted majorization (x,a) ≺ (y,b) by considering any matrix A = (αij) ∈
Mlm(R), verifying

0 ≤ Aik ≤ Amk = 1, (1 ≤ k, i ≤ m) (1.0.29)

where

Aik = α1i + · · ·+ αki (k ∈ {1, 2, . . . ,m}) (1 ≤ k ≤ m), (1.0.30)

such that

bj =
l∑

i=1

aiαji, (j = 1, . . . ,m), (1.0.31)

xi =
m∑
j=1

yjαji, (i = 1, . . . , l). (1.0.32)

We can present now the extension of Sherman’s inequality in Rn, when the weights are allowed to

be nonpositive.

Theorem 1.0.10. If

xm ≺ xm−1 ≺ · · · ≺ x2 ≺ x1. (1.0.33)

and let us suppose that conditions (1.0.29)-(1.0.32) are satisfied. Then, the following inequality

l∑
i=1

aif(xi) ≤
m∑
j=1

bjf(yj)

holds for every convex function f : In → R which is invariant under permutation of coordinates.

The next topic we address in this chapter is related to implement a similar study of a perturbed

family of convex functions by complete homogeneous symmetric polynomials with even degree.

Inspired from the strategy used in [1, 2, 3, 15, 30, 83] we have the following result.
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Theorem 1.0.11. (Jensen-Steffensen’s type inequality) Let C > 0 and let I be an interval in R. If

f : In → R is h2 strongly convex with modulus C and invariant under permutation of coordinates, then

for every monotonic sequence z1, . . . , zm ∈ In, as in (1.0.28), and every real n-tuple p = (p1, . . . , pm)

such that, for every i ∈ {1, 2, . . . ,m}, 0 ≤ Pi ≤ Pm = 1, the following inequality holds:

f

(
m∑
i=1

pizi

)
≤

m∑
i=1

pif (zi)− C
m∑
i=1

pih2 (zi − z̄) ,

where z̄ is defined in (1.0.27).

Using our extension of Sherman’s results (for nonpositive weights) we can deduce Sherman’s inequality

for h2 strongly convex functions with modulus C.

Theorem 1.0.12. (Sherman’s type inequality) Let C > 0 and let I be an interval in R. Let z =

(z1, . . . , zl), y = (y1, . . . ,ym), where z1, . . . , zl ∈ In, y1, . . . ,ym ∈ In and let a = (a1, . . . , al) ∈ Rl and

b = (b1, . . . , bm) ∈ [0,∞)m be such that (y,b) ≺ (z,a). If in addition we assume that

zm ≺ zm−1 ≺ · · · ≺ z2 ≺ z1, (1.0.34)

then for every f : In → R h2 strongly convex with modulus C and invariant under permutation of

coordinates we have

l∑
i=1

bif(yi) ≤
m∑
j=1

ajf(zj)− C
l∑

i=1

bi

m∑
j=1

αjih2(zj − yi).

Chapter III of the present doctoral thesis is based on the paper G.M. Lăchescu, M. Mălin, I. Rovenţa,

On the barycenter for discrete Steffensen Popoviciu measures on global NPC spaces, submitted for

publication.

The first part of this chapter is an introductory one, we present theoretically aspects about global

NPC spaces (properties and useful results). In the second part of this chapter we put in a new light the

concept of barycenter for discrete Steffensen Popoviciu measures supported in some points belonging

to a space with curved geometry. More precisely, we ensure the existence of the barycenter if we relax

the restrictions imposed to the weights of the measure. As applications, even in the case of nonpositive

weights we deduce Jensen-Steffensen’s, HLP’s and Sherman’s type inequalities on global NPC spaces.

Several authors performed an intense research activity to extend majorization theory beyond classical

case of probability measures, i.e. Steffensen Popoviciu measures. The main point of interest into this

topic of research is to offer a large framework under which Jensen’s type inequalities works. Jensen

Steffensen’s inequality (see [116, Theorem 2.4.4]) reveals an important case when Jensen’s inequality

works beyond the framework of positive measures. In fact, this is our aim, to relax the concept of

barycenter in spaces with curved geometry, in order to provide more insight into the relation between

signed measures and Jensen’s type inequalities.

In fact, the above result is related to the general concept of Steffensen Popoviciu’s measure, as it is

presented in [114, 115, 116].

Definition 1.0.10. Let K be a compact convex subset of a real locally convex Hausdorff space E. A

Steffensen Popoviciu measure on K is any real Borel measure µ on K such that µ(K) > 0 and∫
K
f(x) dµ(x) ≥ 0,



CHAPTER 1. INTRODUCTION, PRELIMINARIES AND MAIN RESULTS 15

for every positive, continuous and convex function f : K → R.

The characterization of discrete Steffensen Popoviciu’s measures is presented in [116, Corollary 9.14].

Proposition 1.0.6. Suppose that x1 ≤ · · · ≤ xn are real points and p1, . . . , pn are real weights. Then,

the discrete measure µ =
∑n

k=1 pkδxk is a Steffensen Popoviciu measure if

n∑
k=1

pk > 0 and 0 ≤
m∑
k=1

pk ≤
n∑
k=1

pk (m ∈ {1, . . . , n}).

The concept of barycenter for Steffensen Popoviciu measures was fully discussed in [116, Lemma

9.2.3 and Theorem 9.2.4]. But, our aim is to give a new perspective to the barycenter concept on more

general spaces, namely global NPC spaces, via the majorization techniques.

In what follows we shall deal with the relation of weighted majorization ≺, for pairs of discrete

probability measures. In the context of Euclidean space Rn, the following relation

l∑
i=1

λiδxi ≺
m∑
j=1

µjδyj (1.0.35)

means the existence of a m× l-dimensional matrix A = (aij)i,j such that the next four conditions are

fulfilled:

aij ≥ 0, for all i, j, (1.0.36)
m∑
j=1

aji = 1, i = 1, . . . , l, (1.0.37)

µj =

l∑
i=1

ajiλi, j = 1, . . . ,m, (1.0.38)

and

xi =
m∑
j=1

ajiyj , i = 1, . . . , l. (1.0.39)

Under the above settings, S. Sherman [160] use the concept of weighted majorization and proved

that, the following inequality
l∑

i=1

λif(xi) ≤
m∑
j=1

µjf(yj)

holds for every convex function f : I → R.

Our next aim is to extend Theorem 1.0.7 in the framework of global NPC spaces and then to derive

HLP’s, Sherman’s and Jensen Steffensen’s type inequalities. Hence, we consider the weighted concept

of majorization within a class of spaces with curved geometry that verifies ta weaker form of Apollonius’

theorem relating the length of a median of a triangle to the lengths of its sides.

Definition 1.0.11. A global NPC space is a complete metric space M = (M,d) for which the following

inequality holds true: for every pair of points x0, x1 ∈ M there exists a point y ∈ M such that for all

points z ∈M,

d2(z, y) ≤ 1

2
d2(z, x0) +

1

2
d2(z, x1)− 1

4
d2(x0, x1). (1.0.40)
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Here ”NPC” stands for ”nonpositive curvature”. Global NPC spaces are also known as CAT(0)

spaces or Hadamard spaces. For more details, the interested reader may consult the excellent survey

of Sturm [163] (and also the books of Ballman [17], Bridson and Haefliger [32], and Jost [80]).

In a global NPC space, each pair of points x0, x1 ∈ M can be connected by a geodesic (that is, by

a rectifiable curve γ : [0, 1] → M such that the length of γ|[s,t] is d(γ(s), γ(t)) for all 0 ≤ s ≤ t ≤ 1).

Moreover, this geodesic is unique.

The point y that appears in Definition 1.0.11 is the midpoint of x0 and x1 and has the property

d(x0, y) = d(y, x1) =
1

2
d(x0, x1).

The case of convex combinations for x0 and x1 can be introduced as follows:

(1− λ)x0 � λx1 = arg min
z∈M

[
(1− λ)d2(x0, z) + λd2(x1, z)

]
. (1.0.41)

See Bhatia [24], Proposition 6.2.8, for the case λ = 1/2. Here, an important role is played by the

inequality (1.0.40), which assures the uniform convexity of the square distance.

In a global NPC space M = (M,d), the convexity notions are introduced at follows.

Definition 1.0.12. A set C ⊂ M is called convex if γ([0, 1]) ⊂ C for each geodesic γ : [0, 1] → M

joining the points γ(0), γ(1) ∈ C.

A function f : C → R is called convex if C is a convex set and for each geodesic γ : [0, 1] → C the

composition f ◦ γ is a convex function in the usual sense, that is,

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1))

for all t ∈ [0, 1].

The distance function d is convex on M ×M, while the functions dα(·, z), with α ≥ 1, are convex

on M. See Sturm [163, Corollary 2.5], for details. Despite the fact that the property of associativity

of convex combinations fails it is worth mentioning that Jensen’s inequality works in the context of

global NPC spaces. Note that, the basic ingredient, the barycenter of a discrete probability measures

λ =
∑n

i=1 λiδxi is defined by the formula

bar(λ) = arg min
z∈M

1

2

n∑
i=1

λid
2(z, xi).

In the case of Hilbert spaces, this coincides with the usual definition of barycenter in flat spaces, which

is given by
∑n

i=1 λixi.

The next result is a particular case of the integral form of Jensen’s Inequality, which was first noticed

by Jost [79] (and later extended by Eells and Fuglede [55]). A probabilistic version can be found in

[163].

Theorem 1.0.13. (The discrete form of Jensen’s Inequality). For every continuous convex function

f : M → R and every discrete probability measure λ =
∑n

i=1 λiδxi on M, we have the inequality

f(bar(λ)) ≤
n∑
i=1

λif(xi).
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When x1, . . . , xm, y1, . . . , yn are points in a global NPC space (M,d) and λ1, . . . , λm in [0, 1] are

weights that sum to 1, we define the relation of majorization

m∑
i=1

λiδxi ≺
n∑
j=1

µjδyj (1.0.42)

by asking the existence of an m × n-dimensional matrix A = (aij)i,j that is stochastic on rows and

verifies in addition the following two conditions:

µj =
m∑
i=1

aijλi, j = 1, . . . , n (1.0.43)

and

xi = arg min
z∈M

1

2

n∑
j=1

aijd
2(z, yj), i = 1, . . . ,m. (1.0.44)

The existence and uniqueness of the optimization problems (1.0.44) is assured by the fact that the

objective functions are uniformly convex and positive. See Jost [80], Section 3.1, or Sturm [163,

Proposition 1.7, p. 3]. According to our definition, we have

δbar(λ) ≺ λ,

for every discrete Borel probability measure λ. The following theorem in [126] offers an extension of

the Hardy-Littlewood-Pólya Theorem (HLP) in the context of global NPC spaces.

Theorem 1.0.14. If the relation
m∑
i=1

λiδxi ≺
n∑
j=1

µjδyj

hold in the global NPC space M, then for every real-valued continuous convex function f defined on a

convex subset U ⊂M that contains all points xi and yj, we have the following inequality

m∑
i=1

λif(xi) ≤
n∑
j=1

µjf(yj).

Moreover, using Theorem 1.0.14 we have the following result, in which the properties of convexity

and Schur convexity are connected.

Proposition 1.0.7. (Lim [98], Niculescu and Rovenţa [126]) If we have that

1

n

n∑
i=1

δxi ≺
1

n

n∑
i=1

δyi ,

in the global NPC space M and f : Mn → R is a continuous convex function invariant under the

permutation of coordinates, then

f(x1, . . . , xn) ≤ f(y1, . . . , yn).

Inspired from [94], in this thesis we present an extension of barycenter for Steffensen Popoviciu

discrete measures, where the most important ingredient in NPC spaces is the barycenter of a discrete

probability measures λ =
∑n

i=1 λiδxi . Thus, in what follows we relax the concept of barycenter by

considering nonpositive weights for the discrete measures.
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Definition 1.0.13. Let X := {x1, . . . , xn} be a family of points in a global NPC space M , all these

points belonging to the same geodesic [x1, xn] and, in addition the following assumptions are verified

xi ∈ [xi−1, xi+1] (i ∈ {2, 3, . . . , n− 1}) .

For any family of real weights Λ := {λ1, . . . , λn} which verify

0 ≤ Si ≤ Sn = 1 (i ∈ {1, 2, . . . , n}),

where

Sk = λ1 + · · ·+ λk (k ∈ {1, 2, . . . , n}) ,

we define the notion of weak barycenter of the family of points X with respect to the family of real

weights Λ as the unique point x̄ on the geodesic [x1, xn] satisfying

d(x̄, x1) = S̄2d(x2, x1) + S̄3d(x3, x2) + · · ·+ S̄nd(xn, xn−1), (1.0.45)

or, equivalently,

d(xn, x̄) = S1d(x2, x1) + S2d(x3, x2) + · · ·+ Sn−1d(xn, xn−1), (1.0.46)

where

S̄k = λk + · · ·+ λn (k ∈ {1, 2, . . . , n}) .

Remark 4. Note that, the weak barycenter x̄ from (1.0.45) and (1.0.46) is well defined and we have

that

d(x̄, x1 + d(xn, x̄) = d(x2, x1) + d(x3, x2) + · · ·+ d(xn, xn−1) = d(xn, x1),

which confirm the fact that x̄ lies on the geodesic [x1, xn]. Moreover, using (1.0.45) or (1.0.46), in flat

spaces, so we recover the following classical formula

x̄ = λ1x1 + · · ·+ λnxn.

We are now in position to present Jensen-Steffensen’s inequality in the most relevant case, where

we have considered the maximum possible number of nonpositive weights. In fact, in Chapter III a

completely new strategy is used to prove the following result.

Theorem 1.0.15. (The discrete form of Jensen-Steffensen’s Inequality) Let X and Λ be given as in

Definition 1.0.13, but with nonpositive weights λ2, λ3, . . . , λn−1 ≤ 0.

Then, for every continuous convex function f : M → R we have the inequality

f(x̄) ≤
n∑
i=1

λif(xi).

In order to obtain in thesis, Sherman’s type inequalities with nonpositive weights we firstly introduce

the relaxed concept of majorization between two n-tuples of points in a global NPC space (M,d).

Definition 1.0.14. Let x = (x1, . . . , xn) ∈Mn, y = (y1, . . . , yn) ∈Mn, n ≥ 2.

We define the concept of majorization x ≺ y by asking the existence of a matrix A = (αij) ∈Mlm(R)

such that
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� αji ≤ 0 (i 6= 1 or i 6= l),

� yi ∈ [yi−1, yi+1] (i ∈ {2, 3, . . . , l − 1}) verify that all these points belong to the same geodesic

[y1, ym],

� xi is the weak barycenter of the family of points X := {y1, . . . , ym} with respect to the family of

real weights Λj, i.e. the unique point xi on the geodesic [y1, ym] satisfying

d(xi, y1) = S̄j2d(y2, y1) + S̄j3d(y3, y2) + · · ·+ S̄jnd(yn, yn−1), (1.0.47)

or, equivalently,

d(yn, xi) = Sj1d(y2, y1) + Sj2d(y3, y2) + · · ·+ Sjn−1d(yn, yn−1), (1.0.48)

where

Λj := {α1j , . . . , αnj} (j ∈ {1, . . . ,m}),

S̄jk = αkj + · · ·+ αnj (k ∈ {1, 2, . . . , l}) ,

Sjk = α1j + · · ·+ αkj (k ∈ {1, 2, . . . , l}) ,

0 ≤ Sjk ≤ S
j
n = 1 (k ∈ {1, 2, . . . , l}).

We can present now the extension of HLP’s inequality in a global NPC space (M,d), when the weights

are allowed to be nonpositive.

Theorem 1.0.16. In the hypotheses from Definition 1.0.14 let us suppose that conditions (1.0.47) are

satisfied. Then, the following inequality

n∑
i=1

f(xi) ≤
n∑
i=1

f(yi)

holds for every convex function f : M → R.

We are in position to introduce another result of this thesis, the relaxed weighted concept of ma-

jorization between two n-tuples of points in a global NPC space M .

Definition 1.0.15. Let x = (x1, . . . , xl) ∈M l, y = (y1, . . . , ym) ∈Mm, m, l ≥ 2. We consider some

real weights a = (a1, . . . , al) ∈ Rl (which can be nonpositive) and b = (b1, . . . , bm) ∈ [0,∞)m.

We define the concept of weighted majorization (x,a) ≺ (y,b) by asking the existence of a matrix

A = (αij) ∈Mlm(R) such that

� αji ≤ 0 (i 6= 1 or i 6= l),

� yi ∈ [yi−1, yi+1] (i ∈ {2, 3, . . . , l − 1}) verify that all these points belong to the same geodesic

[y1, ym],

� xi is the weak barycenter of the family of points X := {y1, . . . , ym} with respect to the family of

real weights Λj, i.e. the unique point xi on the geodesic [y1, ym] satisfying

d(xi, y1) = S̄j2d(y2, y1) + S̄j3d(y3, y2) + · · ·+ S̄jnd(yn, yn−1), (1.0.49)
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or, equivalently,

d(yn, xi) = Sj1d(y2, y1) + Sj2d(y3, y2) + · · ·+ Sjn−1d(yn, yn−1), (1.0.50)

where

Λj := {α1j , . . . , αnj} (j ∈ {1, . . . ,m}),

S̄jk = αkj + · · ·+ αnj (k ∈ {1, 2, . . . , l}) ,

Sjk = α1j + · · ·+ αkj (k ∈ {1, 2, . . . , l}) ,

0 ≤ Sjk ≤ S
j
n = 1 (k ∈ {1, 2, . . . , l}),

� the following identities hold

bj =
l∑

i=1

aiαji, (j = 1, . . . ,m). (1.0.51)

We can now present the extension of Sherman’s inequality in a global NPC space (M,d), when the

weights are allowed to be nonpositive.

Theorem 1.0.17. In the hypotheses from Definition 1.0.15 let us suppose that conditions (1.0.45) are

satisfied. Then, the following inequality

m∑
i=1

aif(xi) ≤
l∑

j=1

bjf(yj)

holds for every convex function f : M → R.

The last chapter of this doctoral thesis is devoted to some conclusions, final remarks and further

research objectives. We recall some recent results in literature which could be useful to develop the

results obtained in this doctoral thesis. We also emphasize several different directions of research as

follows: polynomial norms defined in terms of symmetric homogeneous polynomials of even degree

and some error estimates in this area; convexity properties of other symmetric polynomials; discrete

Korn inequalities, etc.



Chapter 2

New majorization results on hd
strongly convex functions

2.1 Convexity and majorization in Rn

In this section, we present some notions (inspired from [68, 69, 104, 116]) related to convexity, ma-

jorization theory and inequalities associated to it. The relation of majorization was introduced by G.

H . Hardy, J. E. Littlewood and G. Pólya [69] in 1929, and was popularized by their celebrated book

on Inequalities [68]. Part of this research activity is summarized in the 900 pages of the recent book

by A. W. Marshall, I. Olkin and B. Arnold [104].

2.1.1 The Hardy-Littlewood-Pólya theory of majorization

The main problem of this subsection is to find necessary and sufficient conditions under which two

families of real numbers x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn accompanied by a family (pk)
n
k=1 of positive

weights, which verify the inequality

n∑
k=1

pkf(xk) ≤
n∑
k=1

pkf(yk), (2.1.1)

for every real-valued continuous convex function f defined on an interval that contains all real numbers

of xk and yk.

This problem is related to Jensen’s inequality, which occurs in particular case where
n∑
k=1

pk = 1 and x1 = · · · = xn =

n∑
k=1

pkyk.

Because the identity and its opposite are continuous convex functions, we deduce that the inequality

(2.1.1) imposes the equality
n∑
k=1

pkxk =
n∑
k=1

pkyk. (2.1.2)

21
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Furthermore, using the convexity of the functions f = (x− yk)+, we obtain

p1x1 + · · ·+ pkxk − (p1 + · · ·+ pk)yk ≤
n∑
j=1

f(xj)

≤
n∑
j=1

f(yj) ≤ p1y1 + · · ·+ pkyk − (p1 + · · ·+ pk)yk,

which gives a new set of necessary conditions:

m∑
k=1

pkxk ≤
m∑
k=1

pkyk for all m ∈ {1, . . . , n− 1}. (2.1.3)

Unexpected, the conditions (2.1.2) and (2.1.3) are also sufficient for solving the problem mentioned

above, even in the case of real weights. This fact is known as Fuchs’ generalization of the Hardy-

Littlewood-Pólya inequality of majorization and can be stated as follows:

Theorem 2.1.1. If (xk)
n
k=1 and (yk)

n
k=1 are two families of real numbers directed downwards,

x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn,

and (pk)k is a family of real weights which satisfy the conditions (2.1.2) and (2.1.3), then

n∑
k=1

pkf(xk) ≤
n∑
k=1

pkf(yk), (2.1.4)

for every function f whose domain of definition is an interval that contains all numbers xk and yk.

Furthermore, in the case when the two families of real numbers (xk)k and (yk)k are directed upwards,

the inequality (2.1.4) works in the reverse direction.

Proof. Without loss of generality we may assume that xk 6= yk for all indices k. Then, according to

Abel’s partial summation formula [116, Theorem 2.4.5] we have

n∑
k=1

pkf(yk)−
n∑
k=1

pkf(xk) =
n∑
k=1

[
pk(yk − xk)

f(yk)− f(xk)

yk − xk

]

=

n−1∑
k=1

(
f(yk)− f(xk)

yk − xk
− f(yk+1)− f(xk+1)

yk+1 − xk+1

)( k∑
i=1

piyi −
k∑
i=1

pixi

)

+
f(yn)− f(xn)

yn − xn

( n∑
i=1

piyi −
n∑
i=1

pixi

)

=

n−1∑
k=1

(
f(yk)− f(xk)

yk − xk
− f(yk+1)− f(xk+1)

yk+1 − xk+1

)( k∑
i=1

piyi −
k∑
i=1

pixi

)
≥ 0

due to our hypotheses (2.1.2) and (2.1.3) and the three chords inequality [116, Remark 1.4.1].

Remark that in the case where x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn, the three chords inequality implies

f(yk)− f(xk)

yk − xk
− f(yk+1)− f(xk+1)

yk+1 − xk+1
≤ 0,

and the proof is complete.
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An analysis of the argument of Theorem 2.1.1, leads to the next result namely Fuchs’ generalization

of the Tomić-Weyl inequality of majorization:

Theorem 2.1.2. If (xk)
n
k=1 and (yk)

n
k=1 are two families of real numbers directed downwards,

x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn,

and (pk)k is a family of real weights which satisfy the inequalities

m∑
k=1

pkxk ≤
m∑
k=1

pkyk for all m ∈ {1, . . . , n},

then
n∑
k=1

pkf(xk) ≤
n∑
k=1

pkf(yk), (2.1.5)

for every convex and increasing function f whose domain of definition is an interval that contains

all numbers xk and yk.

Furthermore, in the case when the two families of real numbers (xk)k and (yk)k are directed upwards,

the last inequality works in the reverse direction.

Note that Hardy, Littlewood and Pólya [68], [69] have considered only the unweighted case of their

inequalities of majorization, that is, the case where all weights equal to unity. We recall them here by

removing the unnecessary assumption on the continuity of the functions involved and noting that the

monotonicity of only one of the two families of numbers is sufficient.

Theorem 2.1.3. (The Hardy-Littlewood-Pólya inequality of majorization) Let f be a convex function

defined on an interval I and let x = (xk)
n
k=1 and y = (yk)

n
k=1 be two families of numbers in I such

that
m∑
k=1

xk ≤
m∑
k=1

yk for m = 1, . . . , n− 1 (2.1.6)

and
n∑
k=1

xk =
n∑
k=1

yk. (2.1.7)

If x1 ≥ · · · ≥ xn, then
n∑
k=1

f(xk) ≤
n∑
k=1

f(yk), (2.1.8)

while if y1 ≤ · · · ≤ yn, then the last inequality works in the reverse direction.

Proof. When x1 ≥ · · · ≥ xn and the hypotheses (2.1.6) and (2.1.7) hold, they will continue to work

when y is replaced by the vector obtained from y by rearranging its components in decreasing order

and the conclusion is a direct consequence of Theorem 2.1.1.

Taking into account the property of subdifferentiability of convex functions we can avoid the use of

Theorem 2.1.1 and for this, rearrange y as above and observe that we may assume that xk 6= yk for all
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k. According to the hypotheses (2.1.6) and (2.1.7), it follows that x1 < y1 and xn > yn, so all points

xk are interior to I. Then by using [116, Theorem 2.1.2] we have that

n∑
k=1

f(yk)−
n∑
k=1

f(xk) =

n∑
k=1

(f(yk)− f(xk)) ≥
n∑
k=1

f ′+(xk)(yk − xk)

=
n−1∑
m=1

(f ′+(xm)− f ′+(xm+1))

( m∑
k=1

(yk − xk)
)

+ f ′+(xn)
n∑
k=1

(xk)(yk − xk)

=
n−1∑
m=1

(f ′+(xm)− f ′+(xm+1))

( m∑
k=1

(yk − xk)
)
,

and the proof ends by noticing that the right derivative f ′+ of the convex function f is increasing on

the interior of I.

Remark that the case when y1 ≤ · · · ≤ yn can be treated in a similar way, by replacing x by the

vector obtained from it by rearranging its components in increasing order.

An immediate consequence of Theorem 2.1.3 is as follows:

Corollary 1. (Truncated majorization) Let f : [0,∞)→ R be an increasing concave function and let

x1, x2, . . . , xn, y1, y2, . . . , ym (2 ≤ m ≤ n) be nonnegative numbers such that

max{x1, . . . , xn} ≤ max{y1, . . . , ym},

max{xi1 + xi2 : i1 6= i2} ≤ max{yj1 + yj2 : j1 6= j2},

...

max

{ k∑
p=1

xip : ir 6= is

}
≤ max

{ k∑
p=1

yjp : jr 6= js

}
,

for k ≤ m and
n∑
i=1

xi ≥
m∑
j=1

yj .

Then
n∑
i=1

f(xi) ≥
m∑
j=1

yj + (n−m)f(0).

The argument of Theorem 2.1.3 yields the Tomić-Weyl inequality of weak majorization [167, 168]:

Theorem 2.1.4. Let f be a convex and increasing function defined on an interval I and let x = (xk)
n
k=1

and y = (yk)
n
k=1 be two families of numbers in I such that

m∑
k=1

xk ≤
m∑
k=1

yk for m = 1, . . . , n.

If x1 ≥ · · · ≥ xn, then
n∑
k=1

f(xk) ≤
n∑
k=1

f(yk),

while if y1 ≤ · · · ≤ yn, then the last inequality works in the reverse direction.
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Now we are in a position to indicate the precise definition of the notion of majorization.

Given a vector x = (x1, . . . , xn) ∈ Rn, we denote by x↓ = (x↓1, . . . , x
↓
n) the vector obtained from x by

rearranging its components in decreasing order,

x↓1 ≥ · · · ≥ x
↓
n.

In a similar way we may introduce the vector x↑ = (x↑1, . . . , x
↑
n), obtained from x by rearranging its

components in increasing order.

Definition 2.1.1. Given two vectors x and y in Rn, we say that x is weakly majorized by y (denoted

x ≺HLPw y) if
k∑
i=1

x↓i ≤
k∑
i=1

y↓i for k = 1, . . . , n,

and that x is majorized by y (denoted x ≺HLP y) if in addition

n∑
i=1

x↓i =
n∑
i=1

y↓i .

When considering the similar relations for vectors rearranged in increasing order, one obtains respec-

tively the corresponding relations denoted x ≺∗HLPw y and x ≺∗HLP y.

Notice that ≺HLP provides a partial order on Rn and the initial order of the components in the

vectors does not play any role in terms of majorization. As it will be shown in Theorem 2.1.7, the fact

that x ≺HLP y means geometrically that the components of x spread out less than those of y.

In information theory, the relation p ≺HLP q (for p and q probability distributions on N outcomes)

implies that p is more disordered than q. Indeed, according to Theorem 2.1.3, we have

H(p) = −
n∑
k=1

pk log2 pk ≥ H(q) = −
n∑
k=1

qk log2 qk,

that is, the Shannon entropy of q does not exceed the Shannon entropy of p. Since the converse does

not work (that is, in general the inequality H(p) ≥ H(q) does not imply p ≺HLP q), this suggests

that the majorization theory could offer stronger criteria for measurement of disorder in a system than

the entropic inequalities. Indeed, this is the case, and the details can be found in the survey of M. A.

Nielsen [129] and the monograph of M. A. Nielsen and I. L. Chuang [130].

Remark 5. The fact that the Tomić-Weyl inequality of weak majorization was obtained as a conse-

quence of the Hardy-Littlewood-Pólya inequality of majorization is not an accident. Indeed, as was

noticed by G. Pólya [141], if

(x1, . . . , xn) ≺HLPw (y1, . . . , yn),

then there exist real numbers xn+1 and yn+1 such that

(x1, . . . , xn, xn+1) ≺HLP (y1, . . . , yn, yn+1).

To check this, choose

xn+1 = min{x1, . . . , xn, y1, . . . , yn} and yn+1 =
n+1∑
k=1

xk −
n∑
k=1

yk.
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W. Arveson and R. Kadison have found another reduction of weak majorization to majorization. Let

x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn be two decreasing sequences of positive real numbers such that

x1 + · · ·+ xk ≤ y1 + · · ·+ yk for k = 1, . . . , n.

Then there is a decreasing sequence y1 ≥ · · · ≥ yn such that 0 ≤ yk ≤ yk for all k and

(x1, . . . , xn) ≺HLP (y1, . . . , yn).

The aforementioned book [68] of Hardy, Littlewood and Pólya also includes a description of the

relation of majorization by averaging means, based on the doubly stochastic matrices. Recall that a

matrix A ∈Mn(R) is doubly stochastic if A has positive entries and each row and each column sums

to unity. A special class of doubly stochastic matrices is that of T -transformations which have the

form

T = λI + (1− λ)Q,

where 0 ≤ λ ≤ 1 and Q is a permutation mapping which interchanges two coordinates, that is,

Tx = (x1, . . . , xj−1, λxj + (1− λ)xk, xj+1, . . . , xk−1, λxk + (1− λ)xj , xk+1, . . . , xn).

Theorem 2.1.5. If x,y ∈ Rn, then the following statements are equivalent:

(i) x ≺HLP y;

(ii) x = Ay for a suitable doubly stochastic matrix A ∈Mn(R);

(iii) x can be obtained from y by successive applications of finitely many T -transformations.

Remark that the implication (ii)⇒ (i) is due to I. Schur [157] and constituted the starting point for

this theorem.

Proof. (iii) ⇒ (ii) Since T -transformations are doubly stochastic, the product of T -transformations

is a doubly stochastic transformation.

(ii) ⇒ (i) This implication is a consequence of Theorem 2.1.3. Assume that A = (ajk)
n
j,k=1 and

consider an arbitrary continuous convex function f defined on an interval including the components

of x and y. Since xk =
∑

j yiajk, and
∑

j ajk = 1 for all indices k, it follows from Jensen’s inequality

that

f(xk) ≤
n∑
j=1

ajkf(yj).

Then
n∑
k=1

f(xk) ≤
n∑
k=1

( n∑
j=1

ajkf(yi)

)
=

n∑
j=1

( n∑
k=1

ajkf(yi)

)
=

n∑
j=1

f(yi),

and Theorem 2.1.3 applies.

(i) ⇒ (iii) Let x and y be two distinct vectors in Rn such that x ≺HLP y. Since permutations are

T -transformations, we may assume that their components verify the conditions

x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn.
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Let j be the largest index such that xj < yj and let k be the smallest index such that k > j and

xk > yk. The existence of such a pair of indices is motivated by the fact that the largest index i with

xi 6= yi verifies xi > yi. Then

yj > xj ≥ xk > yk.

Put

ε = min{yj − xj , xk − yk}, λ = 1− ε

yj − yk
and

y∗ = (y1, . . . , yj−1, yj − ε, yj+1, . . . , yk−1, yk + ε, yk+1, . . . , yn).

Clearly, λ ∈ (0, 1). Denoting by Q the permutation matrix which interchanges the components of

order j and k, we see that y∗ = Ty for the representation

T = λI + (1− λ)Q.

According to the implication (ii) ⇒ (i), it follows that y∗ ≺HLP y. On the other hand, x ≺HLP y∗.

In fact,
s∑
r=1

y∗r =
s∑
r=1

yr ≥
s∑
r=1

xr for s = 1, . . . , j − 1,

y∗j ≥ xj and y∗r = yr for r = j + 1, . . . , k − 1,

s∑
r=1

y∗r =

s∑
r=1

yr ≥
s∑
r=1

xr for s = k + 1, . . . , n

and
n∑
r=1

y∗r =
n∑
r=1

yr =
n∑
r=1

xr.

Letting d(u,v) be the number of indices r such that ur 6= vr, it is clear that d(x,y∗) ≤ d(x,y)− 1, so

by repeating the above algorithm (at most) n− 1 times, we arrive at x.

The Hardy-Lttlewood-Pólya inequality of majorization admits a generalization due to S. Sherman

[160] to the case where the vectors x and y are not necessarily in the same vector space. For functions

defined on intervals it reduces to the following result.

Theorem 2.1.6. Suppose that I is an interval of R and consider the vectors a = (a1, . . . , am) ∈ Rm+ ,

b = (b1, . . . , bn) ∈ Rn+, x = (x1, . . . , xm) ∈ Im and y = (y1, . . . , yn) ∈ In. Then

n∑
i=1

bif(yi) ≤
m∑
j=1

ajf(xj),

for every convex function f : I → R if and only if there exists an n×m dimensional matrix S = (sij)i,j
with positive entries such that

y = Sx, a = STb

and
m∑
j=1

sij = 1 for every i.
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An elegant proof of this result has been presented by G. Bennett [23], Lemma 6.1, p. 894. The next

two results need some preparation concerning the action of the permutation group on the Euclidian

space.

The permutation group of order n is the group Π(n) of all bijective functions from {1, . . . , n} onto

itself. This group acts on Rn via the map Ψ : Π(n)× Rn → Rn, defined by the formula

Ψ(π,x) = πx = (xπ(1), . . . , xπ(n)).

The orbits of this action, that is, the sets of the form O(x) = {πx : π ∈ Π(n)}, play an important

role in majorization theory.

Definition 2.1.2. A subset C of Rn is called invariant under permutations (or Π(n)-invariant) if

πx ∈ C whenever π ∈ Π(n) and x ∈ C. Therefore, a function F defined on a Π(n)-invariant subset C

is called Π(n)-invariant (or invariant under permutations) if F (πx) = F (x) whenever π ∈ Π(n) and

x ∈ C.

Note that all elementary symmetric functions (as well as all norms of index p ∈ [1,∞]) are invariant

under permutations. Furthermore, to every convex function ϕ : Rn → R one can attach a convex

function ϕΠ : Rn → R invariant under permutations via the formula

ϕΠ(x) =
∑

π∈Π(n)

ϕ(πx).

A geometric insight into majorization was revealed by R. Rado, who noticed that x ≺HLP y means

that the components of x spread out less than those of y in the sense that x lies in the convex hull of

the n! permutations of y.

Theorem 2.1.7. (R. Rado [146]) x ≺HLP y ∈ Rn if and olny if x belongs to the convex hull of the

n! permutations of y. Therefore, we have

{x : x ≺HLP y} = conv{πy : π ∈ Π(n)}.

Proof. According to Theorem 2.1.5, if x ≺HLP y, then x = Ay for some doubly stochastic matrix.

Taking into account Birkhoff’s theorem, A can be represented as a convex combination A =
∑

π λπAπ
of the n! permutation matrices Aπ. Then we have

x =
∑
π

λπAπ(y) ∈ conv{Aπ(y) : π ∈ Π(n)}.

Conversely, if x ∈ conv{Aπ(y) : π ∈ Π(n)}, then x admits a convex representation of the form

x =
∑

π λπAπ(y), whence x = (
∑

π λπAπ)(y).

Remarkably, the relation of majorization gives rise to inequalities of the type (2.1.8) not only for the

continuous convex functions of the form

F (x1, . . . , xn) =

n∑
k=1

f(xk),

but also for all quasiconvex functions F (x1, . . . , xn) which are invariant under the action of the per-

mutation group.
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Theorem 2.1.8. (I. Schur [157]) If C is a convex set in Rn invariant under permutations and F :

C → R is a quasiconvex function invariant under permutations, then

x ≺HLP y implies F (x) ≤ F (y).

Proof. Indeed, according to Theorem 2.1.7, we have

F (x) ≤ sup{F (u) : u ∈ conv{πy : π ∈ Π(n)}}

= sup{F (πy) : π ∈ Π(n)} = F (y).

Two simple examples of quasiconvex functions invariant under permutations that are not convex are

log

( n∑
k=1

xk

)
and

xα1 + · · ·+ xαn
n
√
x1 · · ·xn

for α > 0 and x1, . . . , xn > 0.

For more examples, notice that if f and g are two functions defined on a convex set C ⊂ Rn such that

f is positive and convex and g is strictly positive and concave, then f/g is quasiconvex.

An illustration of Theorem 2.1.8 is offered by the following result due to R. F. Muirhead [109]:

Theorem 2.1.9. (Muirhead’s inequality) If x and y are two vectors in Rn such that x ≺HLP y and

α1, . . . , αn are strictly positive numbers, then∑
π∈Π(n)

αx1π(1) . . . α
xn
π(n) ≤

∑
π∈Π(n)

αy1π(1) . . . α
yn
π(n), (2.1.9)

the sum being taken over all permutations π of the set {1, . . . , n}.

Actually, Muirhead has considered only the case where x and y have positive integer components.

The extension to the case of real components is due to G. H. Hardy, J. E. Littlewood and G. Pólya

[68].

Proof. Put w = (log a1, . . . , log an). Then we have to prove that∑
π∈Π(n)

e〈x,πw〉 ≤
∑

π∈Π(n)

e〈y,πw〉.

This follows from Theorem 2.1.8 because the function u →
∑

π∈Π(n) e
〈u,πw〉 is convex and invariant

under permutations.

The converse of Theorem 2.1.9 also works: If the inequality (2.1.9) is valid for all α1, . . . , αn > 0,

then x ≺HLP y. Indeed, the case where α1 = · · · = αn > 0 gives us

α
∑n
k=1 xk

1 ≤ α
∑n
k=1 yk

1 ,

so that
n∑
k=1

xk =
n∑
k=1

yk,
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since α1 > 0 is arbitrary. Denote by P the set of all subsets of {1, . . . , n} of size k and take α1 = · · · =
αk > 1 and αk+1 = · · · = αn = 1. By our hypotheses,∑

S∈P
α
∑
i∈S xi

1 ≤
∑
S∈P

α
∑
i∈S yi

1 .

If
∑k

j=1 x
↓
j >

∑k
j=1 y

↓
j , this leads to a contradiction for α1 large enough. Thus x ≺HLP y.

2.1.2 Several applications to linear algebra

A well known result in linear algebra states that the trace of a matrix equals the sum of its eigenvalues.

What more can be said about the possible diagonal entries of the real symmetric matrices having a

fixed set of eigenvalues? The answer to this problem is given by the Schur-Horn theorem:

Theorem 2.1.10. Suppose that

d = (d1, . . . , dn) and λ = (λ1, . . . , λn)

are two vectors in Rn. Then there is a real symmetric matrix with diagonal entries d1, . . . , dn and

eigenvalues λ1, . . . , λn if and only if d ≺HLP λ.

Schur’s contribution was the striking remark concerning the implication of majorization to this mat-

ter.

Lemma 2.1.1. (I. Schur [157]) Let B ∈ Mn(R) be a self-adjoint matrix with diagonal elements

b11, . . . , bnn and eigenvalues λ1, . . . , λn. Then

(b11, . . . , bnn) ≺HLP (λ1, . . . , λn).

Proof. Using the spectral decomposition theorem, B = UDU∗, where U = (ukj)k,j is orthogonal and

D is diagonal, with diagonal entries λ1, . . . , λn. The diagonal elements of B are

bkk = 〈Bek, ek〉 =
n∑
j=1

λiu
2
kj =

n∑
j=1

akjλj ,

where akj = u2
kj ; as usually, e1, . . . , en denote the natural basis of Rn. Since U is orthogonal, the

matrix A = (akj)k,j is doubly stochastic and Theorem 2.1.5 applies.

Since the function log is concave, from Theorem 2.1.3 and Lemma 2.1.1 we infer the following in-

equality:

Corollary 2. (Hadamard’s determinant inequality) If B is an n×n-dimensional positive matrix with

diagonal elements b11, . . . , bnn and eigenvalues λ1, . . . , λn, then

n∏
k=1

bkk ≥
n∏
k=1

λk.

A. Horn [71] has proved a converse to Lemma 2.1.1, which led to the statement of Theorem 2.1.10:
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Lemma 2.1.2. If x and y are two vectors in Rn such that x ≺HLP y, then there exists a symmetric

matrix B such that the entries of x are the diagonal elements of B and the entries of y are the

eigenvalues of B.

Proof. We follow here the argument of W. Arveson and R. Kadison [13].

Step 1: If B = (bij)i,j ∈ Mn(R) is a symmetric matrix with diagonal d, then for every T -transform

T there exists a unitary matrix U such that UBU∗ has diagonal Td.

Indeed, suppose that

T = (1− cos2 θ)I + (sin2 θ)Pπ,

where π is a permutation that interchanges i0 and j0. Then the matrix U = (uij)i,j , obtained by

modifying four entries of the identity matrix as follows,

ui0i0 = i sin θ, ui0j0 = − cos θ,

uj0i0 = i cos θ, uj0j0 = sin θ,

is unitary and a straightforward computation shows that the diagonal of UBU∗ is equal to (1 −
cos2 θ)d+ (sin2 θ)Pπ(d).

Step 2: Let Λ = Diag(y). By Theorem 2.1.5, x can be obtained from y by successive applications of

finitely many T -transformations,

x = TmTm−1 · · ·T1y.

By Step 1, there is a unitary matrix U1 such that U1ΛU∗1 has diagonal T1y. Similarly, there is a

unitary matrix U2 such that U2(U1ΛU∗1 )U∗2 has diagonal T2(T1y). Iterating this argument, we obtain

a self-adjoint matrix

B = (UmUm−1 · · ·U1)Λ(UmUm−1 · · ·U1)∗

whose diagonal elements are the entries of x and the eigenvalues are the entries of y.

2.1.3 The Schur-convexity property

Taking into account the Theorem 2.1.8, the quasiconvex functions f : Rn → R invariant under per-

mutations are isotonic with respect to the relation of majorization, that is,

x ≺HLP y implies f(x) ≤ f(y). (2.1.10)

The implication (2.1.10) holds true beyond the framework of quasiconvex functions invariant under

permutations. Simple examples such as f(x1, x2) = −x1x2 on R2 can justify this implication. This

led I. Schur [157] to initiate a systematic study of the functions that verify the property (2.1.10).

Definition 2.1.3. A function f : C → R defined on a set invariant under permutations is called

Schur-convex if

x ≺HLP y implies f(x) ≤ f(y).

If in addition f(x) < f(y) whenever x ≺HLP y but x is not a permutation of y, then f is said to be

strictly Schur-convex.

We call the function f (strictly) Schur-concave if −f is (strictly) Schur-convex.



CHAPTER 2. NEW MAJORIZATION RESULTS ON HD STRONGLY CONVEX FUNCTIONS32

Every Schur-convex function defined on a set C invariant under permutations is a function invariant

under permutations. This is a consequence of the fact that x ≺HLP Pπ(x) and Pπ(x) ≺HLP x for

every vector x ∈ Rn and every permutation matrix Pπ ∈Mn(R).

The Schur-convex functions contain a large variety of examples such as:

Example 1. If J : Rn → R is a function (strictly) increasing in each variable and f1, . . . , fn are

(strictly) Schur-convex functions on Rn, then the function j(x) = J(f1(x), . . . , fn(x)) is (strictly)

Schur-convex on Rn. Some particular examples of strictly Schur-convex functions are:

max{x1, . . . , xn} and log

( n∑
k=1

x2
k

)
on Rn;

−
n∏
k=1

xk on (0,∞)n.

Theorem 2.1.11. (The Schur-Ostrowski criterion of Schur-convexity) Let I be a nonempty open

interval. A differentiable function f : In → R is Schur-convex if and only if it fulfils the following two

conditions:

(i) f is invariant under permutations;

(ii) for every x ∈ In and i, j ∈ {1, . . . , n} we have

(xi − xj)
(
∂f

∂xi
(x)− ∂f

∂xj
(x)

)
≥ 0.

Proof. Necessity. For (i), see the comments after Definition 2.1.3. This reduces the verification of (ii)

to the case where i = 1 and j = 2. Fix arbitrarily x ∈ In and choose ε > 0 sufficiently small such that

x(t) = ((1− t)x1 + tx2, tx1 + (1− t)x2, x3, . . . , xn) ∈ D, (2.1.11)

for t ∈ (0, ε]. Then x(t) ≺HLP x, which yields f(x(t)) ≤ f(x). Therefore

0 ≥ lim
t→0

f(x(t))− f(x)

t
=
df(x(t))

dt

∣∣∣∣
t=0

= −(x1 − x2)

(
∂f

∂x1
(x)− ∂f

∂x2
(x)

)
.

Sufficiency. We have to prove that y ≺HLP x implies f(y) ≤ f(x). According to Theorem 2.1.5, it

suffices to consider the case where

y = ((1− s)x1 + sx2, sx1 + (1− s)x2, x3, . . . , xn),

for some s ∈
[
0, 1

2

]
. Consider x(t) as in formula (2.1.11). Then

f(y)− f(x) =

∫ s

0

d

dt
f(x(t))dt

= −
∫ s

0
(x1 − x2)

(
∂f

∂x1
(x(t))− ∂f

∂x2
(x(t))

)
dt

= −
∫ s

0

pr1x(t)− pr2x(t)

1− 2t

(
∂f

∂x1
(x(t))− ∂f

∂x2
(x(t))

)
dt,

where prk denotes the projection to the k-th coordinate. According to condition (ii), f(y)−f(x) ≤ 0,

and the proof is complete.
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The elementary symmetric functions of n variables are defined by the formulas

e0(x1, x2, . . . , xn) = 1,

e1(x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn,

...

ek(x1, x2, . . . , xn) =
∑

1≤i1<···<ik≤n
xi1 . . . xik ,

...

en(x1, x2, . . . , xn) = x1x2 · · ·xn.

Clearly, they are invariant under permutations. A small computation shows that

∂

∂xi
ek(x1, . . . , xn) = ek−1(x1, . . . , x̂i, . . . , xn)

and
∂

∂xi
ek(x1, . . . , xn)− ∂

∂xj
ek(x1, . . . , xn) = −(xi − xj)ek−2(x1, . . . , x̂i, . . . , x̂j , . . . , xn),

where the cup indicates the omission of the coordinate underneath. This leads us to the following

consequence of Theorem 2.1.11:

Corollary 3. (I. Schur) All elementary symmetric

ek(x1, x2, . . . , xn)

of n variables are Schur-concave on Rn+.

Since (
x1 + · · ·+ xn

n
, . . . ,

x1 + · · ·+ xn
n

)
≺HLP (x1, . . . , xn),

for every (x1, . . . , xn) ∈ Rn+, we infer from Corollary 3 that

ek(x1, x2, . . . , xn) =
∑

1≤i1<···<ik≤n
xi1 . . . xik ≤

(
n

k

)(
x1 + · · ·+ xn

n

)k
,

for k = n we retrieve the AM-GM inequality.

Remark 6. The relation of majorization is closely related to the duality of cones, more precisely, to

the fact that the dual cone of the monotone cone

Rn≥ = {(x1, . . . , xn) ∈ Rn : x1 ≥ · · · ≥ xn}

is the cone

(Rn≥)∗ =

{
y ∈ Rn :

m∑
k=1

yk ≥ 0 for m = 1, . . . , n− 1, and

n∑
k=1

yk = 0

}
.

Indeed, if x,y ∈ Rn≥, then

x ≺HLP y if and only if y − x ∈ (Rn≥)∗.
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This leads to the more general concept of majorization with respect to a convex cone C in a real vector

space V ,

x ≺C y if and only if y − x ∈ C∗,

and, implicitly, to a generalization of Schur convexity. In the case of self-dual cones C (like Rn+ and

Sym+(n,R)), the corresponding concept of Schur convexity coincides with that of a function which is

monotone increasing on C.

2.1.4 On vector majorization in Rn

The usual relation of majorization, described in Section 2.1.1 as a relation between strings of real

numbers can be easily generalized as a relation between strings of weighted vectors in Rn. This was

done by S. Sherman [160], inspired by the equivalence of conditions (i) and (ii) in Theorem 2.1.5.

Definition 2.1.4. The relation of majorization

(x1, . . . ,xm;λ1, . . . , λm) ≺Sh (y1, . . . ,yn;µ1, . . . , µn) (2.1.12)

between two strings of weighted points in Rn is defined by asking the existence of an m×n-dimensional

matrix A = (aij)i,j such that

aij ≥ 0 for (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, (2.1.13)

n∑
j=1

aij = 1 for i = 1, . . . ,m, (2.1.14)

µj =
m∑
i=1

aijλi for j = 1, . . . n, (2.1.15)

and

xi =
n∑
j=1

aijyj for i = 1, . . . ,m. (2.1.16)

We assume that all weights λi and µj belong to [0, 1] and

m∑
i=1

λi =

n∑
j=1

µj = 1.

The matrices verifying the conditions (2.1.13) and (2.1.14) are called stochastic on rows. When m = n

and all weights λi and µj are equal to each other, then the condition (2.1.15) assures the stochasticity

on columns, so in that case we deal with doubly stochastic matrices.

Remark 7. The relation of majorization introduced by Definition 2.1.4 can be restated as a relation

between probability measures, letting

m∑
i=1

λiδxi ≺Sh
n∑
j=1

µjδyj ,
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if the conditions (2.1.13) - (2.1.16) hold. In this context, the condition (2.1.16) means that

xi = bar

( n∑
j=1

aijδyj

)
for i = 1, . . . ,m,

a fact that allows easily to define the relation of majorization between probability measures not only in

Rn, but also in any space where the notion of barycenter of a probability measure makes sense. Notice

also that the conditions (2.1.14) and (2.1.16) imply that

x1, . . . ,xm ∈ conv{y1, . . . ,yn}.

The following theorem provides a large extension of the Hardy-Littlewood-Pólya inequality of ma-

jorization:

Theorem 2.1.12. (S. Sherman [160]) Suppose that
∑m

i=1 λiδxi and
∑n

j=1 µjδyj are two Borel proba-

bility measures on Rn. Then the following assertions are equivalent:

(i)
∑m

i=1 λiδxi ≺Sh
∑n

j=1 µjδyj ;

(ii) x1, . . . ,xm ∈ conv{y1, . . . ,yn} and every continuous convex functions f defined on conv{y1, . . . ,yn}
(or to a larger convex subset of Rn) verifies the inequality

m∑
i=1

λif(xi) ≤
n∑
j=1

µjf(yj).

2.1.5 Convex type inequalities

We present a first example describes how convex functions relate the arithmetic means of the subfam-

ilies of a given triplet of numbers.

Theorem 2.1.13. (Popoviciu’s inequality [144]) If f : I → R is a continuous function, then f is

convex if and only if

f(x) + f(y) + f(z)

3
+ f

(
x+ y + z

3

)
≥ 2

3

[
f

(
x+ y

2

)
+ f

(
y + z

2

)
+ f

(
z + x

2

)]
,

for all x, y, z ∈ I. In the variant of strictly convex functions, the above inequality is strict except for

x = y = z.

Proof. Necessity. This part does not make use of the continuity of f . It suffices to consider the case

where f is the absolute value function, that is, to show that

|x|+ |y|+ |z|+ |x+ y + z| ≥ |x+ y|+ |y + z|+ |z + x|, (2.1.17)

for all x, y, z ∈ I. This is an immediate consequence of the order properties of real numbers.

A second approach, based on the polynomial identity,

x2 + y2 + z2 + (x+ y + z)2 = (x+ y)2 + (y + z)2 + (z + x)2,
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has the advantage to extend to the framework of Euclidian spaces. Indeed,

(|x|+ |y|+ |z|+ |x+ y + z| − |x+ y| − |y + z| − |z + x|)× (|x|+ |y|+ |z|+ |x+ y + z|)

= (|x|+ |y| − |x+ y|)(|z|+ |x+ y + z| − |x+ y|)

+(|y|+ |z| − |y + z|)(|x|+ |x+ y + z| − |y + z|)

+(|z|+ |x| − |z + x|)(|y|+ |x+ y + z| − |z + x|) ≥ 0,

and the necessity part is done.

Sufficiency. Popoviciu’s inequality when applied for y = z, yields the following substitute for the

condition of midpoint convexity:

1

4
f(x) +

3

4
f

(
x+ 2y

3

)
≥ f

(
x+ y

2

)
for all x, y ∈ I.

Theorem 2.1.14. (Abel’s partial summation formula) If (ak)
n
k=1 and (bk)

n
k=1 are two families of

complex numbers, then

n∑
k=1

akbk =
n−1∑
k=1

[
(ak − ak+1)

(
k∑
j=1

bj

)]
+ an

(
n∑
j=1

bj

)
.

Corollary 4. (The Abel-Steffensen inequality [162]) If x1, . . . , xn and y1, . . . , yn are two families of

real numbers that verify one of the following two conditions

(i) x1 ≥ · · · ≥ xn ≥ 0 and
∑j

k=1 yk ≥ 0 for all j ∈ {1, 2, . . . , n},

(ii) 0 ≤ x1 ≤ · · · ≤ xn and
∑n

k=j yk ≤ 0 for all j ∈ {1, 2, . . . , n},

then
n∑
k=1

xkyk ≥ 0.

Therefore, if x1, . . . , xn is a monotonic family and y1, . . . , yn is a family of real numbers such that

0 ≤
j∑

k=1

yk ≤
n∑
k=1

yk,

for j = 1, . . . , n, then we have(
min

1≤k≤n
xk

) n∑
k=1

yk ≤
n∑
k=1

xkyk ≤
(

max
1≤k≤n

xk

) n∑
k=1

yk.

Another result whose proof can be considerably simplified by the piecewise linear approximation of

convex functions in the following generalization of Jensen’s inequality, due to J. F. Steffensen [162].

Unlike Jensen’s inequality, it allows the use of negative weights.
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Theorem 2.1.15. (The Jensen-Steffensen inequality) Suppose that x1, . . . , xn is a monotonic family

of points in an interval [a, b] and w1, . . . , wn are real weights such that

n∑
k=1

wk = 1 and 0 ≤
m∑
k=1

wk ≤
n∑
k=1

wk,

for every m ∈ {1, . . . , n}.
Then every convex function f defined on [a, b] verifies the inequality

f

( n∑
k=1

wkxk

)
≤

n∑
k=1

wkf(xk).

Proof. We may reduce ourselves to the case of absolute value function. Assuming the ordering x1 ≤
· · · ≤ xn, we infer that

0 ≤ x+
1 ≤ · · · ≤ x

+
n and x−1 ≥ · · · ≥ x

−
n ≥ 0.

According to Corollary 4,
n∑
k=1

wkx
+
k ≥ 0 and

n∑
k=1

wkx
−
k ≥ 0

which yields ∣∣∣∣ n∑
k=1

wkxk

∣∣∣∣ ≤ n∑
k=1

wk|xk|

and the proof is complete.

The integral version of Jensen-Steffensen inequality can be established in the same manner, using

integration by part instead of Abel’s partial summation formula.

Theorem 2.1.16. (The integral version of Jensen-Steffensen inequality) Suppose that g : [a, b] → R
is a monotone function and w : [a, b]→ R is an integrable function such that

0 ≤
∫ x

a
w(t)dt ≤

∫ b

a
w(t)dt = 1 for every x ∈ [a, b].

Then every convex function f defined on an interval I that includes the range of g verifies the inequality

f

(∫ b

a
g(t)w(t)dt

)
≤
∫ b

a
f(g(t))w(t)dt.

Another application of Abel’s partial summation formula is as follows.

Theorem 2.1.17. (The discrete form of Hardy-Littlewood rearrangement inequality [68]) Let x1, . . . , xn, y1, . . . , yn
be real numbers. Then

n∑
k=1

x↓ky
↓
n−k+1 ≤

n∑
k=1

xkyk ≤
n∑
k=1

x↓ky
↓
k,

where x↓1 ≥ · · · ≥ x
↓
n denotes the decreasing rearrangement of a family x1, . . . , xn of real numbers.

Proof. Notice first that we may assume that x1 ≥ · · · ≥ xn ≥ 0. Then, apply Abel’s partial summation

formula.
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2.2 New versions of uniformly convex functions via quadratic com-

plete homogeneous symmetric polynomials

In this section, we introduce new versions of uniformly convex functions, namely hd strongly (weaker)

convex functions. Based on the positivity of complete homogeneous symmetric polynomials with even

degree, recently studied in [153, 165], we introduce stronger and weaker versions of uniformly convexity.

In this context, we recover well-known type inequalities such as: Jensen’s, Hardy-Littlewood-Polya’s

and Popoviciu’s inequalities. Some final remarks related to Sherman’s and Ingham’s type inequalities

are also discussed.

The topic we address in this section of the thesis is related to the study of a new family of convex

functions which is based on the positivity property of complete homogeneous symmetric polynomials

with even degree. The study of the positivity of symmetric polynomial functions goes back to an

old paper of Hunter [74], where a tricky argument is proposed. Afterwards, in [165] was considered

a genuinely different way to establish the positivity of such polynomials. Moreover, two different

ideas are presented in [153], one of them being based on a Schur-convexity argument and the other

one following a method with divided differences. Fine estimates on the norms on complex matrices

induced by complete homogeneous symmetric polynomials are obtained in [4] and [37].

The family of complete homogeneous symmetric polynomials with n variables x1, . . . , xn and degree

d ∈ N is defined as follows

h0(x1, . . . , xn) = 1,

hd(x1, . . . , xn) :=
∑

1≤i1≤···≤id≤n
xi1 · · ·xid (d ≥ 1).

A key strategy to prove the positivity of hd, for all even degrees d ≥ 2, consists of using Schur-

convexity and majorization techniques. The concept of majorization lies in the core of a powerful

topic of research with interesting recent results. In this regard, we just enumerate few of them: a

necessary and sufficient condition for a linear map to preserve group majorizations can be found

in [131]; new majorization results are studied in [83, 132]; interesting properties on superquadratic

functions related to Jensen–Steffensen’s inequality are obtained in [1]. All these ideas are also based on

the theory of uniformly convex functions, which in addition gives the possibility to define the concept

of majorization into the spaces of curved geometry (see [126]). More results on this topic can be found

in [112, 113, 114, 117, 124].

In order to present the current settings we address in this section, let us introduce the above mentioned

concepts of stronger and weaker hd convexity for functions defined on Rn.

The key point to introduce this new versions of uniformly convexity is based on a positivity result

given in [153], which asserts that: if d ≥ 2 is an even natural index, then

hd(x1, x2, . . . , xn) ≥ 0 (x1, . . . , xn ∈ R). (2.2.1)

Based on (2.2.1) we define a new class of convex functions by considering a perturbation of convex

functions with complete homogeneous symmetric polynomials.
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Definition 2.2.1. Let C > 0 and let d ≥ 2 be an even natural number. A function f : Rn → R
is said to be hd strongly convex with modulus C if the function f(·) − C hd(·) is convex. Similarly, a

function f : Rn → R is called hd weakly convex with modulus C if the function f(·)+C hd(·) is convex.

The above definition is inspired from the notion ω-m-star convex function (see, for instance, [96]).

In order to motivate the concept of h2 strongly/weakly convex function we first recall the notion of

uniformly convex function.

Definition 2.2.2. Let C > 0. A function f : Rn → R is said to be uniformly convex with modulus

C if f(·)− C ‖·‖2 is convex. Equivalently, the function f is uniformly convex with modulus C if and

only if the following inequality holds

f((1− λ)x + λy)) ≤ (1− λ)f(x) + λf(y)− Cλ(1− λ) ‖x− y‖2 , (2.2.2)

for all x,y ∈ Rn and λ ∈ [0, 1].

A first objective of this section consists in showing that (2.2.2) holds similarly, even in the context

of h2 strongly convexity (see Proposition 2.2.1).

We simply remark that, based on the following estimate

1

2
‖x‖2 ≤ h2(x) ≤ n+ 1

2
‖x‖2 (x ∈ Rn, n ∈ N∗),

we have, in general, the equivalence between the concepts of uniformly convexity and hd strongly

convexity. But, in particular, going deeply to the modulus, we cannot prove the existence of two

positive constants C1 and C2 such that: a function is h2 strongly convex with modulus C1 if and

only if it is uniformly convex with modulus C2. In this sense, other related remarks and examples are

given in Proposition 2.2.2. On the other hand, we prove that Jensen’s, Hardy-Littlewood-Polya’s and

Popoviciu’s inequalities for h2 strongly convex functions produce different constants in the error right

hand term (comparing with the ones obtained in the case of uniformly convex functions).

A second objective of this section consists in studying the general and difficult case, i.e. hd strongly

convexity, for any even natural number d ≥ 4. We show that (2.2.2) can be also extended in this very

general case (see Theorem 2.2.1). We use fine estimates and computations in order to get hd versions

of Jensen’s, Hardy-Littlewood-Polya’s and Popoviciu’s inequalities. Other classical inequalities are

also obtained in this section (see Theorem 2.2.2, but also Proposition 2.2.3 - Proposition 2.2.10). This

confirm that the family of hd strongly convex functions lead to new ideas of further research.

We strongly consider that the new concept and results presented in this section can be used to

establish connections and further applications related to other important scientific achievements in

literature (see [2, 3, 15, 96, 133, 169]), as we have shortly explained in the final subsection of this

section. The motivation of studying such functions is successfully accomplished by Jensen’s, Hardy-

Littlewood-Polya’s and Popoviciu’s inequalities in a very general case.

It is worth mentioning that even if hd polynomials cannot induce a norm (for example, in majorization

settings, we have that for any two vectors satisfying x ≺ y, h2(y) ≥ h2(x) + h2(y − x), see Lemma

2.2.1) similar results (as in the uniform convexity settings) can be obtained. An interesting approach

related to this idea was given in [135], for the case of strongly convexity and hence, further research
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can be now done in our settings. This is why we compare our results, all along the section, with the

ones obtained for classical strongly convexity.

The rest of the section is organised as follows: In Subsection 2.2.1 we present our main results,

starting with the case of h2 strongly convex functions, where we deduce similar estimates as the ones

for uniformly convex functions (Jensen’s type inequalities). The rest of the section is devoted to the

hd strongly convex functions: Theorem 2.2.1 represents a fundamental result which confirm that the

family of hd strongly convex functions have a nice behaviour, even in the general case. Majorization

properties gluing together with hd strongly Schur convex functions are revealed in Subsection 2.2.2,

where Hardy-Littlewood-Polya’s and Popoviciu’s type inequalities are obtained. The last subsection is

devoted to some final remarks related to Sherman’s inequalities for ω-m star convex functions. Further

consequences on Ingham’s type inequalities in control theory are also discussed.

2.2.1 New results on hd strongly convex functions

In this subsection we present important results concerning hd strongly convex functions, where d ≥ 2

is any even natural number. Despite the main result of this subsection presented in Theorem 2.2.1 we

deduce other interesting consequences which confirm the relevance of hd strongly convexity.

Firstly, we present a surprisingly property of h2 strongly convex functions which consists of an

inequality similar to (2.2.2).

Proposition 2.2.1. Let C > 0. Then, the function f : Rn → R is h2 strongly convex with modulus C

if and only if

f((1− λ)x + λy)) ≤ (1− λ)f(x) + λf(y)− Cλ(1− λ)h2(x− y), (2.2.3)

for all x,y ∈ Rn and λ ∈ [0, 1].

Proof. Let x,y ∈ Rn and λ ∈ [0, 1]. Taking into account the identity

h2(x1, . . . , xn) = x2
1 + · · ·+ x2

n +
∑

1≤i<j≤n
xixj ,

the property that f(·)− C h2(·) is convex can be expressed as

f((1− λ)x + λy)− C
n∑
i=1

((1− λ)xi + λyi)
2 − C

∑
1≤i<j≤n

((1− λ)xi + λyi)((1− λ)xj + λyj)

≤ (1− λ)f(x) + λf(y)− C(1− λ)

 n∑
i=1

x2
i +

∑
1≤i<j≤n

xixj

− Cλ
 n∑
i=1

y2
i +

∑
1≤i<j≤n

yiyj

 .

Based on the fact that

n∑
i=1

((1− λ)xi + λyi)
2 +

∑
1≤i<j≤n

((1− λ)xi + λyi)((1− λ)xj + λyj)

−(1− λ)

 n∑
i=1

x2
i +

∑
1≤i<j≤n

xixj

− λ
 n∑
i=1

y2
i +

∑
1≤i<j≤n

yiyj





CHAPTER 2. NEW MAJORIZATION RESULTS ON HD STRONGLY CONVEX FUNCTIONS41

= (λ2 − λ)

 n∑
i=1

(xi − yi)2 +
∑

1≤i<j≤n
(xi − yi)(xj − yj)


= (λ2 − λ)h2(x− y),

we obtain

h2((1− λ)x + λy)− (1− λ)h2(x)− λh2(y) = h2(x− y)(λ2 − λ).

Hence, the proof of (2.2.3) is complete.

In order to emphasize the difference between the notions of uniformly convexity and strongly hd
convexity we present the case of very particular family of polynomial functions.

Proposition 2.2.2. Let f : R3 → R be a function defined as

f(x, y, z) =
a

2
x2 + ay2 +

a

2
z2 + (a− α)xz + b (a, b, α ∈ R).

Then, for any a ∈ (0,∞) and b ∈ R there exists C > 0 and α > 0 such that f is h2 strongly convex

with modulus C. Futhermore, for any ε > 0 there exist a, b, α such that f is not uniformly convex with

modulus ε.

Proof. The Hessian matrix for the function f is given by

Hf =

 a 0 a− α
0 2a 0

a− α 0 a

 .

Notice that, for any a > 0 there exist C > 0 and α ∈ R such that the Hessian matrix corresponding

to the function g(·) = f(·)− Ch2(·) is positive definite, and therefore g is convex. More precisely, we

have

Hg =

 a− 2C −C a− α− C
−C 2a− 2C −C

a− α− C −C a− 2C

 ,

and thus, for n ≥ 4, let C = n
2n+1a and let α = n−1

n C = n−1
2n+1a in order to fulfill the desired property

for Hg, i.e. det(Hg) = 2C3

n

(
n2 − 3n− 3

)
> 0 (other two diagonal determinants of order 1 and 2 are

also strictly positive).

On the other hand, the Hessian matrix of the function gunif (·) = f(·)− ε‖ · ‖2 is given by

Hgunif =

a− 2ε 0 a− α
0 2a− 2ε 0

a− α 0 a− 2ε

 .

In this case, we get

det(Hgunif ) = 2(a− ε)
(
(a− 2ε)2 − (a− α)2

)
,

which is strictly negative for all ε > 0, a ≥ α and α = n−1
n ε (or α = 0).

In the general case, for any even natural number d ≥ 2, we get a natural but powerful extension of

Proposition 2.2.1.
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Theorem 2.2.1. Let C > 0 and let d ≥ 2 be an even natural number. Then, the function f : Rn → R
is hd strongly convex with modulus C > 0 if and only if

f((1− λ)x + λy)) ≤ (1− λ)f(x) + λf(y)− Cλ
d
2 (1− λ)

d
2hd(x− y), (2.2.4)

for all x,y ∈ Rn and λ ∈ [0, 1].

Moreover, for each x,y ∈ Rn and λ ∈ [0, 1] we have

hd((1− λ)x + λy)− (1− λ)hd(x)− λhd(y) ≤ −λ
d
2 (1− λ)

d
2hd(x− y). (2.2.5)

Proof. Notice that the case d = 2 and n ≥ 1 is already proved in Proposition 2.2.1. Our proof strategy

is based on an induction argument with respect to the even natural number d ≥ 2, but also with

respect to the number of variables n ≥ 1. For the convenience of the reader, we take into account

firstly the case d = 4. We consider this case in order to be confident on the mathematical induction

argument.

Thus, by using Definition 2.2.1 for d = 4 we have to prove that for all x, y ∈ Rn and λ ∈ [0, 1] we

have

h4((1− λ)x + λy)− (1− λ)h4(x)− λh4(y) ≤ −λ2(1− λ)2h4(x− y). (2.2.6)

Firstly, we consider the case n = 1. In this particular case, for each x, y ∈ R and λ ∈ [0, 1], (2.2.6)

becomes

((1− λ)x+ λy)4 ≤ (1− λ)x4 + λy4 − λ2(1− λ)2(x− y)4. (2.2.7)

The above inequality is a consequence of the following computations

((1− λ)x+ λy)4 − (1− λ)x4 − λy4 =
(
(1− λ)4 − (1− λ)

)
x4 + 4(1− λ)3λx3y

+6(1− λ)2λ2x2y2 + 4(1− λ)λ3xy3 +
(
λ4 − λ

)
y4

= 4λ(1− λ)3x3(y − x) + 4λ3(1− λ)y3(x− y)

+λ(1− λ)
(
3(1− λ)2 − (1− λ)− 1

)
x4 + 6λ2(1− λ)2x2y2 + λ(1− λ)

(
3λ2 − λ− 1

)
y4

= λ(1− λ)(x− y)2
(
(−λ2 + 3λ− 3)x2 + (2λ2 − 2λ− 2)xy − (λ2 + λ+ 1)y2

)
= −λ2(1− λ)2(x− y)4

−λ(1− λ)(x− y)2
(
(2λ2 − 4λ+ 3)x2 + 2(−2λ2 + 2λ+ 1)xy + (2λ2 + 1)y2

)
≤ −λ2(1− λ)2(x− y)4,

where for the last inequality we have used that

(2λ2 − 4λ+ 3)x2 + 2(−2λ2 + 2λ+ 1)xy + (2λ2 + 1)y2 ≥ 0 (x, y ∈ R, λ ∈ [0, 1]).

Secondly, for n ≥ 2, let us consider x = (x1, . . . , xn) , y = (y1, . . . , yn) in Rn and λ ∈ [0, 1]. Thanks

to the following expansion formulae

h4 (x1, . . . , xn) = x1

 ∑
1≤i≤n

xih2(xi, xi+1 . . . , xn)

+ h4 (x2, . . . , xn) , (2.2.8)
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h4 (x1, . . . , xn) =

n−1∑
j=1

xj

 ∑
j≤i≤n

xih2(xj , xi+1 . . . , xn)

+ h4 (xn) , (2.2.9)

by using an induction argument, our aim is to reduce the number of variables of inequalities which

are to be proved. More precisely, starting with x = (x1, . . . , xn) , y = (x1, . . . , xn) in Rn we show that

(2.2.6) holds for vectors x̃ = (x2, . . . , xn) , ỹ = (y2, . . . , yn) in Rn−1, and then we continue the process

in a similar way until we reach the end in R. Finally, we use the fact (2.2.7) holds for n = 1 and the

proof of (2.2.6) is then complete. For each j ≥ 1, let us consider

T 2
j (x) = xj

∑
j≤i≤n

xih2(xi, xi+1 . . . , xn). (2.2.10)

Then, by using (2.2.8) and (2.2.9), we can reduce the proof of (2.2.6) to the following inequality

n−1∑
j=1

(
T 2
j ((1− λ)x + λy)− (1− λ)T 2

j (x)− λT 2
j (y)

)
≤ −λ2(1− λ)2

n−1∑
j=1

T 2
j (x− y). (2.2.11)

Therefore, once we prove (2.2.11) we can then use (2.2.8) in a repeated way and based on (2.2.7) and

(2.2.9) at the end of process, we finally get

h4((1− λ)x + λy)− (1− λ)h4(x)− λh4(y) = T 2
1 ((1− λ)x + λy)− (1− λ)T 2

1 (x)− λT 2
1 (y)

+h4((1− λ)x̃ + λỹ)− (1− λ)h4(x̃)− λh4(ỹ)

. . . . . . . . .

≤ −λ2(1− λ)2
n−1∑
i=1

(
T 2
j ((1− λ)x + λy)− (1− λ)T 2

j (x)− λT 2
j (y)

)
+h4((1− λ)xn + λyn)− (1− λ)h4(xn)− λh4(yn)

≤ −λ2(1− λ)2

(
n−1∑
i=1

T 2
i (x− y) + h4(xn − yn)

)
= −λ2(1− λ)2h4(x− y),

and hence, (2.2.6) holds.

We prove now (2.2.11) by replacing x̃i = (xi, xi+1 . . . , xn), ỹi = (yi, yi+1 . . . , yn) in relation (2.2.10),

i. e.
n−1∑
j=1

(
T 2
j ((1− λ)x + λy)− (1− λ)T 2

j (x)− λT 2
j (y)

)

=

n−1∑
j=1

((1− λ)xj + λyj)

n∑
i=j

((1− λ)xi + λyi)h2 ((1− λ)x̃i + λỹi)

−(1− λ)

n−1∑
j=1

xj

n∑
i=j

xih2 (x̃i)− λ
n−1∑
j=1

yj

n∑
i=j

yih2 (ỹi)

= −λ(1− λ)

n−1∑
j=1

n∑
i=j

pijh2 ((1− λ)x̃i + λỹi) + λ(1− λ)

n−1∑
j=1

n∑
i=j

pij
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×
(

(1− λ)xjxi + λyjyi
λ(1− λ)pij

h2 ((1− λ)x̃i + λỹi)−
(1− λ)xjxi
λ(1− λ)pij

h2 (x̃i)−
λyjyi

λ(1− λ)pij
h2 (ỹi)

)

≤ −λ(1− λ)
n−1∑
j=1

n∑
i=j

pijλ(1− λ)h2 (x̃i − ỹi) = −λ2(1− λ)2
n−1∑
j=1

n∑
i=j

T 2
j (x− y),

where the last estimates are due to the fact that

((1− λ)xj + λyj) ((1− λ)xi + λyi) = −λ(1− λ)pij + (1− λ)xjxi + λyjyi,

pij = (xj − yj)(xi − yi).

Hence, the proof of (2.2.6) is now complete.

Note that, at this stage, we have proved (2.2.4) and (2.2.5) only for the case for d = 4. In addition,

we have also obtained the following generalized inequality in the case n = 2

n−1∑
j=1

(
T dj ((1− λ)x + λy)− (1− λ)T dj (x)− λT dj (y)

)
≤ −λ

d
2

+1(1− λ)
d
2

+1
n−1∑
j=1

T dj (x− y), (2.2.12)

where

T dj (x) = xj
∑
j≤i≤n

xihd(xi, xi+1 . . . , xn). (2.2.13)

In what follows we prove (2.2.4) and (2.2.5) in the general case, by using (2.2.11), for any even

natural number d ≥ 2, and by using again the induction argument, this time with respect to the even

parameter d. In order to do this, we suppose that for a fixed natural even number d ≥ 2 the following

inequality holds

hd((1− λ)x + λy)− (1− λ)hd(x)− λhd(y) ≤ −λ
d
2 (1− λ)

d
2hd(x− y). (2.2.14)

By using (2.2.13) we get

n−1∑
j=1

T dj ((1− λ)x + λy)− (1− λ)T dj (x)− λT dj (y)

=

n−1∑
j=1

((1− λ)xj + λyj)

n∑
i=j

((1− λ)xi + λyi)hd ((1− λ)(xi, . . . , xn) + λ(yi, . . . , yn))

−(1− λ)

n−1∑
j=1

xj

n∑
i=j

xihd(xi, xi+1 . . . , xn)− λ
n−1∑
j=1

yj

n∑
i=j

yihd(yi, yi+1 . . . , yn)

= −λ(1− λ)
n−1∑
j=1

n∑
i=j

pijhd((xi − yi, xi+1 − yi+1 . . . , xn − yn)) + λ(1− λ)
n−1∑
j=1

n∑
i=j

pij

×
(

(1− λ)xjxi + λyjyi
λ(1− λ)pij

hd ((1− λ)(xi, xi+1 . . . , xn) + λ(yi, yi+1 . . . , yn))

−(1− λ)xjxi
λ(1− λ)pij

hd ((xi, xi+1 . . . , xn))− λyjyi
λ(1− λ)pij

hd ((yi, yi+1 . . . , yn))

)
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≤ −λ(1− λ)

n−1∑
j=1

n∑
i=j

pijλ
d
2 (1− λ)

d
2hd((xi − yi, xi+1 − yi+1 . . . , xn − yn))

= −λ
d
2

+1(1− λ)
d
2

+1
n−1∑
j=1

n∑
i=j

T dj (x− y),

where we have used the following estimates

pij = (xj − yj)(xi − yi)

and

((1− λ)x1 + λy1) ((1− λ)xi + λyi) = −λ(1− λ)pij + (1− λ)x1xi + λy1yi.

We can now continue inductively the sequence of inequalities in order to get

hd+2((1− λ)x + λy)− (1− λ)hd+2(x)− λhd+2(y) ≤ −λ
d
2

+1(1− λ)
d
2

+1hd+2(x− y), (2.2.15)

by using as the main tool the following generalised expansion formulas

hd+2 (x1, . . . , xn) = x1

 ∑
1≤i≤n

xihd(xi, xi+1 . . . , xn)

+ hd+2 (x2, . . . , xn) , (2.2.16)

hd+2 (x1, . . . , xn) =
n−1∑
i=1

xi

 ∑
i≤j≤n

xjhd(xj , xj+1 . . . , xn)

+ hd+2 (xn) . (2.2.17)

More precisely, we obtain

hd+2((1− λ)x + λy)− (1− λ)hd+2(x)− λhd+2(y)

= T d1 ((1− λ)x + λy)− (1− λ)T d1 (x)− λT d1 (y)

+hd((1− λ)x̃ + λỹ)− (1− λ)hd(x̃)− λhd(ỹ)

. . . . . . . . .

≤ −λ2(1− λ)2
n−1∑
i=1

(
T dj ((1− λ)x + λy)− (1− λ)T dj (x)− λT 2

j (y)
)

+hd((1− λ)xn + λyn)− (1− λ)hd(xn)− λhd(yn)

≤ −λ
d
2

+1(1− λ)
d
2

+1

(
n−1∑
i=1

T di (x− y) + hd(xn − yn)

)
= −λ

d
2

+1(1− λ)
d
2

+1hd(x− y),

and hence, (2.2.6) holds in the general case d ≥ 2. Therefore, the proof of (2.2.4) and (2.2.5) follows

easily.

We end this subsection by presenting an inequality of Jensen’s type in the case of hd strongly convex

functions, for any even natural number d ≥ 2.
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Proposition 2.2.3. (Jensen’s type inequality for hd strongly convexity) Let C > 0 and let d ≥ 2

be an even natural number. If f : I → R, I ⊂ R is a given function such that F (x1, . . . , xn) =

f(x1) + · · · + f(xn) is hd strongly convex with modulus C on In then, for all x1, . . . , xn ∈ I, the

following inequality holds

f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n

− C 1

n

(
n+ d− 1

d

)((
x1 + · · ·+ xn

n

)d
− xd1 + · · ·+ xdn

n

)
.

(2.2.18)

Proof. Based on convexity properties of F (·)− Chd(·) we have that

F

(
x1 + · · ·+ xn

n

)
− Chd

(
x1 + · · ·+ xn

n

)

≤ F (x1)− Chd(x1) + · · ·+ F (xn)− Chd(xn)

n
,

where x1 = (x1, . . . , x1), x2 = (x2, . . . , x2), . . . , xn = (xn, . . . , xn) belong to In.

Consequently, we get

nf

(
x1 + · · ·+ xn

n

)
− C

(
n+ d− 1

d

)(
x1 + · · ·+ xn

n

)d
≤ f(x1) + · · ·+ f(xn)− C

n

(
n+ d− 1

d

)(
xd1 + · · ·+ xdn

)
.

Finally, we easily get (2.2.18) and the proof is complete.

2.2.2 Open problems on hd strongly convexity

In this subsection we are dealing with majorization results concerning hd strongly convex functions.

More precisely, we obtain Jensen’s type inequalities in two different contexts and we notice that even

the results are of the same type, the constants appearing in front of error term are different. We also

succeed to develop majorization results, such as Hardy-Littlewood-Polya’s and Popoviciu’s inequalities.

In order to compare Jensen’s type inequalities for hd strongly convex functions and uniformly convex

functions we present the following result (which can be seen as an easily consequence of the results

from [170]).

Proposition 2.2.4. (Jensen’s type inequality for uniform convexity) Let C > 0 and let f : I → R,

I ⊂ R be such that F : In → R, defined as F (x1, . . . , xn) = f(x1) + · · · + f(xn), is uniformly convex

with modulus C. Then, for all x1, . . . , xn ∈ I the following inequality holds

f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
− C

n

∑
1≤i<j≤n

(xi − xj)2. (2.2.19)
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Remark 8. Let C > 0 and let f : I → R, I ⊂ R such that F : In → R, defined as F (x1, . . . , xn) =

f(x1) + · · · + f(xn), is h2 strongly convex with modulus C. Then, for all x1, . . . , xn ∈ I, by using

(2.2.18) the following inequality holds

f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
− Cn+ 1

2n2

∑
1≤i<j≤n

(xi − xj)2. (2.2.20)

Moreover, we can also take in Proposition 2.2.3 other type of functions, which are related to the

construction of hd polynomials. In order to do this, let us introduce

Fk(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n
f(xi1) · · · f(xik) (k = 2, . . . , n). (2.2.21)

Based on a similar strategy we can deduce the following result.

Proposition 2.2.5. Let C > 0, k ≥ 2 and let f : I → R, I ⊂ R be such that Fk : In → R, which is

defined in (2.2.21), is h2 strongly convex with modulus C. Then, for all x1, . . . , xn ∈ I the following

inequality holds(
n

k

)(
fk
(
x1 + · · ·+ xn

n

)
− fk(x1) + · · ·+ fk(xn)

n

)
≤ −Cn+ 1

2n

∑
1≤i<j≤n

(xi − xj)2. (2.2.22)

Proof. The proof is very similar with the one presented in Proposition 2.2.3.

In the second part of this subsection we present several majorization type inequalities in the context

of hd strongly convex functions. More precisely, we are dealing with extensions of Hardy-Littlewood-

Polya’s and Popoviciu’s inequalities in the case of our new class of convex functions.

Let us consider x↓ and y↓ two vectors with the same entries as x, respectively y, expressed in

decreasing order, as

x↓1 ≥ · · · ≥ x
↓
n, y

↓
1 ≥ · · · ≥ y

↓
n.

We say that, the vector x is majorized by y (abbreviated, x ≺ y) if

k∑
i=1

x↓i ≤
k∑
i=1

y↓i (1 ≤ k ≤ n− 1),

n∑
i=1

x↓i =

n∑
i=1

y↓i .

(2.2.23)

More details and applications concerning the majorization theory can be found in [104]. We refer to

the monotonicity with respect to the majorization order, the so called Schur-convex property, which

has been introduced by I. Schur in 1923.

Definition 2.2.3. The function f : A → R, where A is a symmetric subset of Rn, is called Schur-

convex if x ≺ y implies f(x) ≤ f(y).
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A simple computation tool (see, for instance, [104]) which is used to study the Schur-convexity

property of a function is given as follows. For any symmetric function f(x) = f(x1, x2, . . . , xn) having

continuous partial derivatives on In = I×I×· · ·×I, the Schur-convexity property is reduced to check

the following inequality

(xi − xj)
(
∂f

∂xi
− ∂f

∂xj

)
≥ 0 (1 ≤ i, j ≤ n, xi, xj ∈ I).

We introduce now the notions of hd strongly Schur convexity and uniformly Schur convexity.

Definition 2.2.4. Let C > 0. A function f : In → R is said to be hd strongly Schur-convex with

modulus C if the function f(·)− C hd (·) is Schur-convex.

Definition 2.2.5. Let C > 0. A function f : In → R is said to be uniformly Schur-convex with

modulus C if the function f(·)− C ‖·‖2 is Schur-convex.

Proposition 2.2.6. Let A be a symmetric subset of Rn and let f : A → R be a symmetric function

with continuous partial derivatives. Then, f is strongly Schur-convex if and only if(
∂f

∂xi
− ∂f

∂xj

)
(xi − xj) ≥ C(xi − xj)2 (1 ≤ i, j ≤ n, xi, xj ∈ R).

Proof. The proof easily follows from

∂h2(x1, x2, . . . , xn)

∂x1
− ∂h2(x1, x2, . . . , xn)

∂x2
= (x1 − x2).

We first remark that a similar Jensen’s type inequalities is obtained by using this time majorization

arguments and obtaining another constants in front of the right hand error term.

Proposition 2.2.7. (Jensen’s type inequality via Hardy-Littlewood-Polya’s inequality) Let C > 0 and

let f : I → R, I ⊂ R be a function such that F (x1, . . . , xn) = f(x1) + · · ·+ f(xn) is hd strongly Schur

convex with modulus C on In. Then, for all x1, . . . , xn ∈ I the following inequality holds

f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
− C

2n2

∑
1≤i<j≤n

(xi − xj)2. (2.2.24)

Proof. Based on the following well-known majorization result(
x1 + ...+ xn

n
, ...,

x1 + · · ·+ xn
n

)
≺ (x1, . . . , xn)

and by using Schur convexity property of F (·)− Ch2(·) we get

nf

(
x1 + · · ·+ xn

n

)
− Ch2

(
x1 + · · ·+ xn

n
, . . . ,

x1 + · · ·+ xn
n

)
≤ f(x1) + · · ·+ f(xn)− Ch2(x1, . . . , xn),

which yields (2.2.24).
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We are able now to deduce and to compare two different versions of Hardy-Littlewood-Polya’s ma-

jorization theorem, one for uniform convexity case and another one for hd strongly convexity case.

We start by proving an useful lemma, which represents the triangle inequality in the reverse way, in

majorization settings. In this context, connections with the subdifferential concept can be established.

For more details, see [135].

Lemma 2.2.1. For each x ≺ y on Rn the following inequality holds

h2(y) ≥ h2(x) + h2(y − x). (2.2.25)

Proof. By using (2.2.23) we get

h2(y)− h2x) =
1

2

( n∑
i=1

y↓i

)2

−

(
n∑
i=1

x↓i

)2

+

n∑
i=1

(y↓i )
2 −

n∑
i=1

(x↓i )
2


= h2(x− y) +

n∑
i=1

(y↓i − x
↓
i )(S + x↓i ),

where S =
n∑
i=1

xi =
n∑
i=1

yi. Thus, we have to prove that the sum from the right hand side of the above

inequality is positive, and this can be done by using a classical telescopic sums trick as follows

n∑
i=1

(y↓i − x
↓
i )(S + x↓i ) =

n∑
i=1

(y↓i − x
↓
i )x
↓
i

=
n−1∑
i=1

(
x↓i − x

↓
i+1

)(
y↓1 − x

↓
1 + · · ·+ y↓i − x

↓
i

)
+ x↓n

n∑
i=1

(
y↓i − x

↓
i

)
≥ 0,

where for the last estimates we have essentially used (2.2.23).

Proposition 2.2.8. (Hardy-Littlewood-Polya’s inequality for uniformly convexity) Let C > 0 and let

f : I → R, I ⊂ R be a function such that F (x1, . . . , xn) = f(x1) + · · · + f(xn) is uniformly Schur

convex with modulus C on In. If x ≺ y on In the following inequality holds

n∑
i=1

f(yi) ≥
n∑
i=1

f(xi) + C

n∑
i=1

(yi − xi)2. (2.2.26)

Proof. Since the function f(·)−C | · |2 is convex, by using the properties of the subdifferential we get

the existence of λi ∈ ∂g(xi), i. e.

f(y)− Cy2 ≥ f(xi)− Cx2
i + (λi − 2Cxi)(y − xi) (i = 1, . . . , n, y ∈ I).

Hence, summing all the above inequalities for each y = yi we obtain

n∑
i=1

f(yi) ≥
n∑
i=1

f(xi) + C

n∑
i=1

(
y2
i − x2

i

)
+

n∑
i=1

(λi − 2Cxi)(yi − xi),
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which leads to
n∑
i=1

f(yi) ≥
n∑
i=1

f(xi) + C
n∑
i=1

(yi − xi)2 +
n∑
i=1

λi(yi − xi).

In order to complete the proof of (2.2.26), it is enough to show that
∑n

i=1 λi(yi − xi) ≥ 0. But, this

can be done by using a similar argument as in the proof of Lemma 2.2.1.

Theorem 2.2.2. (Hardy-Littlewood-Polya’s inequality for strongly hd functions) Let C > 0 and let

f : I → R, I ⊂ R be a function such that F (x1, . . . , xn) = f(x1) + · · · + f(xn) is hd strongly Schur

convex with modulus C on In. If x ≺ y on In the following inequality holds

n∑
i=1

f(yi) ≥
n∑
i=1

f(xi) + Ch2(y − x). (2.2.27)

Proof. By using the definition of hd strongly Schur convexity with modulus C we get

n∑
i=1

f(yi) ≥
n∑
i=1

f(xi) + C (h2(y)− h2(x)) ,

which finally gives (2.2.27), as a direct consequence of Lemma 2.2.1.

In the end of this subsection we give some natural extensions of Popoviciu’s inequalities for h2 strongly

convex functions, but also for uniformly convex functions.

Proposition 2.2.9. (Popoviciu’s type inequality for h2 strongly convexity) Let C > 0 and let f : I →
R, I ⊂ R be a function such that F (x1, . . . , xn) = f(x1) + · · ·+ f(xn) is hd strongly Schur convex with

modulus C on In. Then, for all x, y, z ∈ I the following inequality holds

f(x) + f(y) + f(z)

3
+ f

(
x+ y + x

3

)
≥ 2

3

(
f

(
x+ y

2

)
+ f

(
x+ z

2

)
+ f

(
y + z

2

))
(2.2.28)

+
C

36

(
(x− y)2 + (y − z)2 + (x− z)2

)
.

Proof. We begin by recalling the following majorization relation (see, for instance, [114]), i. e. for all

x, y, z ∈ R we have that u ≺ v, where

u =

(
x+ y

2
,
x+ y

2
,
x+ z

2
,
x+ z

2
,
y + z

2
,
y + z

2

)
,

v =

(
x+ y + z

3
,
x+ y + z

3
,
x+ y + z

3
, x, y, z

)
.

By Schur-convexity properties of F (·)− Ch2(·) we obtain

f(x) + f(y) + f(z) + 3f

(
x+ y + x

3

)
≥ 2

(
f

(
x+ y

2

)
+ f

(
x+ z

2

)
+ f

(
y + z

2

))
+C (h2(v)− h2(u)) .

By using the following tricky identity

h2(v)− h2(u) =
1

2
h2(x, y, z)− 1

3
(x+ y + z)2,

we deduce that (2.2.28) holds and the proof is complete.
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Proposition 2.2.10. (Popoviciu’s type inequality for uniform convexity) Let f : I → R and let C > 0

be such that g(·) = f(·)− C | · |2 is convex on I. Then, for all x, y, z ∈ Ithe following inequality holds

f(x) + f(y) + f(z)

3
+ f

(
x+ y + x

3

)
≥ 2

3

(
f

(
x+ y

2

)
+ f

(
x+ z

2

)
+ f

(
y + z

2

))

+
C

18

(
(x− y)2 + (y − z)2 + (x− z)2

)
. (2.2.29)

Proof. For each x, y, z ∈ I, by applying Popoviciu’s classical inequality for the convex function f(·)−
C | · |2 we have that

f(x) + f(y) + f(z) + 3f

(
x+ y + x

3

)
≥ 2

(
f(
x+ y

2
) + f(

x+ z

2
) + f(

y + z

2
)

)

+C

(
x2 + y2 + z2 + 3

(
x+ y + x

3

)2

− 2

(
x+ y

2

)2

− 2

(
x+ z

2

)2

− 2

(
y + z

2

)2
)
.

Finally, several computations in the last term of the above inequality gives (2.2.29) and the proof is

complete.

Remark 9. Notice that, all inequalities in the above two propositions differ only by the constants

appearing in the right hand error term, which can be related to the variance/dispersion in probability

theory. We can also remark that different constants cannot appear here by only moving from one

concept to the other one, since we have no equivalence between h2 strongly convex functions with

modulus C1 and uniformly convex functions with modulus C2. See also the case of Jensen’s type

inequalities. We end this remark be mentioning that, in all the above results, we can also consider the

case of functions defined in (2.2.21).

Finally, we emphasize that the notion of hd strongly convexity and the results presented in this

subsection can also be seen in connection with other results existing in literature. We are strongly

confident that the present section gives the possibility to develop other interesting results on this topic,

such as in other relevant papers (see, for instance [2, 3, 15, 96, 133, 169]).

More precisely, our first proposal of new research is related to the class of ω-m-star convex functions,

for which modulus function ω can be replaced with the polynomial function hd. This is motivated by

[96], where some similar properties are presented and for which we are able to express ω-m-star convex

property, for some particular function ω, in terms of convexity of a suitable perturbed function. The

second aim is to get Sherman’s type inequalities for hd strongly convex functions. Also, our ideas

can also be extended on spaces related to other weaker notions (relative convexity, spaces with global

nonpositive curvature, see [124, 126]).

On the other hand, new Ingham’s type weighted inequalities are recently proved in [154, 155] by

using the positivity of quadratic polynomials. The proofs are essentially based on an Ingham’s proof

technique inspired from [78]. As applications, the authors consider families of frequencies with rele-

vance in the approximation of controls theory, for which the uniform (with respect to the mesh-size)

controllability property of the semi-discrete model is proved, when the spurious frequencies (the gap

between them tends to zero when the mesh size goes to zero) are eliminated.
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The third future aim is to use the theory developed in this section to prove the positivity of a very

general class of weighted symmetric polynomials. Then, as a direct consequence we may provide

Ingham’s type inequalities, when we eliminate frequencies which are very close to each other. We can

also study the uniform boundedness of a sequence of discrete controls, related to such inequalities.

This is needed in order to study the approximations of the controls of the continuous wave equation.

See, for instance, [45, 77, 78, 81, 99, 100, 172]. We also expect that, a deep development of the

results from this section to give us the possibility to prove Ingham’s type inequalities in a very general

framework, by considering hd strongly convexity assumptions and eliminating the frequencies in the

area where the gap is lost.

Finally, based on the fact that different kind of strongly and weakly convexity notions are studied

in the literature, some clarifying remarks are needed. Starting with strongly convex and strongly

quasy-convex functions introduced by Polyak [142] other notion of uniformly convex function at a

point are studied in [169]. More precisely, in order to define this pointwise notion of convexity it was

introduced a positive function δ depending on the term ‖x− y‖, with have a similar role as the error

term in the right hand side of (2.2.2). Note that, in our case, the error term of the form hd(x− y) is

a function of several variables and cannot be seen as a function of the form δ(‖x− y‖). Moreover, in

[82, 170, 171] the notion of convexifiable function (in the sense of Definition 2.2.1 ) is studied. In this

context, similar inequalities, even of integral type, are obtained. See also [46], for other interesting

results. Hence, the idea to consider positive symmetric polynomials instead of functions depending

on the norm and the possibility to obtain similar results offer a new and fresh perspective within the

topic of convexity.

2.3 The Hardy-Littlewood-Pólya inequality of majorization in the

context of ω-m-star-convex functions

In this section, the Hardy-Littlewood-Pólya inequality of majorization is extended for ω-m-star-convex

functions to the framework of ordered Banach spaces. Several open problems which seem to be of

interest for further extensions of the Hardy-Littlewood-Pólya inequality are also included. The Hardy-

Littlewood-Pólya theorem of majorization is an important result in convex analysis that lies at the

core of majorization theory, a subject that has attracted a great deal of attention due to its numerous

applications in mathematics, statistics, economics, quantum information etc. See [103, 104, 114, 128,

139, 140] and [156] to cite just a few books treating this topic.

The relation of majorization was initially formulated as a relation between pairs of vectors with real

entries rearranged downward, but nowadays its formulation as a preordering of probability measures.

For the reader’s convenience we briefly recall here the most basic facts concerning the theory of

majorization.

Given two discrete probability measures µ =
∑N

k=1 λkδxk and ν =
∑N

k=1 λkδyk , supported by a

compact interval [a, b], we say that µ is majorized by ν (denoted µ ≺ ν) if the following three conditions

are fulfilled:
(M1) x1 ≥ x2 ≥ · · · ≥ xN
(M2)

∑k
i=1 λixi ≤

∑k
i=1 λiyi for k = 1, . . . , N ; and

(M3)
∑N

i=1 λixi =
∑N

i=1 λiyi.
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When only conditions (M1) and (M2) occur, we say that µ is weakly majorized by ν (denoted µ ≺w ν).

Hardy, Littlewood and Pólya [68] used a stronger formulation of (M1), by requiring also that y1 ≥
y2 ≥ · · · ≥ yN . Later, their result was improved by Maligranda, Pečarić and Persson [101] who were

able to prove that

µ ≺ ν implies

∫ b

a
f dµ =

N∑
k=1

f(xk) ≤
∫ b

a
f dν =

N∑
k=1

f(yk), (HLP)

for all continuous convex functions f : [a, b]→ R. Moreover, the same conclusion holds in the case of

weak majorization and convex and nondecreasing functions.

Nowadays the inequality HLP is known as the Hardy-Littlewood-Pólya inequality of majorization.

In the early 1950s, the Hardy-Littlewood-Pólya inequality was extended by Sherman [160] to the case

of continuous convex functions of a vector variable by using a much broader concept of majorization,

based on matrices stochastic on lines. The full details can be found in [114], Theorem 4.7.3, p. 219.

Over the years, many other generalizations in the same vein have been published. See, for example,

[31, 117, 118, 124, 125, 126] and [133].

As was noticed in [112] and [113], the Hardy-Littlewood-Pólya inequality of majorization can be

extended to the framework of convex functions defined on ordered Banach spaces alongside the con-

ditions (M1) − (M3). The aim of this section is to prove that the same works for the larger class of

ω-m-star-convex functions.

The main features of these functions are discussed in subsection 2.3.1. In subsection 2.3.2 we present

different types of majorization relations in ordered Banach spaces. The corresponding extensions of

the Hardy-Littlewood-Pólya inequality constitute the objective of subsection 2.3.3. The section ends

with mentioning several open problems which seem to be of interest for further extensions of the

Hardy-Littlewood-Pólya inequality.

2.3.1 Preliminaries on ω-m-star-convex functions

Throughout this subsection E is a Banach space and C is a convex subset of it.

Definition 2.3.1. Let m be a real parameter belonging to the interval (0, 1]. A function Φ : C → R
is said to be a perturbed m-star-convex function with modulus ω : [0,∞) → R (abbreviated as ω-m-

star-convex function) if it fulfils an estimate of the form

Φ((1− λ)x + λmy) ≤ (1− λ)Φ(x) +mλΦ(y)−mλ(1− λ)ω (‖x− y‖) ,

for all x,y ∈ C and λ ∈ (0, 1).

The ω-m-star-convex functions associated to an identically zero modulus will be called m-star-convex.

They satisfy the inequality

Φ((1− λ)x + λmy) ≤ (1− λ)Φ(x) +mλΦ(y),

for all x,y ∈ C and λ ∈ (0, 1).



CHAPTER 2. NEW MAJORIZATION RESULTS ON HD STRONGLY CONVEX FUNCTIONS54

Notice that the usual convex functions represent the particular case of m-star-convex functions where

m = 1. On the other hand every convex function is m-star-convex (for every m ∈ (0, 1]) if 0 ∈ C and

Φ(0) ≤ 0. Indeed, we have

Φ((1− λ)x + λmy) = Φ((1− λ)x + λmy + (λ− λm)0)

≤ (1− λ)Φ(x) +mλΦ(y) + (λ− λm)Φ(0)

= (1− λ)Φ(x) +mλΦ(y).

Every ω-m-star-convex function associated to a modulus ω ≥ 0 is necessarily m-star-convex. The

ω-m-star-convex functions whose moduli ω are strictly positive except at the origin (where ω(0) = 0)

are usually called uniformly m-star-convex. In their case the definitory inequality is strict whenever

x 6= y and λ ∈ (0, 1).

By reversing the inequalities, one obtains the notions of ω-m-star -concave function and uniformly

m-star -concave function.

The theory of m-star-convex functions was initiated by Toader [166], who considered only the case

of functions defined on real intervals. For additional results in the same setting see [108] and the

references therein.

A simple example of a (16/17)-star-convex function which is not convex is

f : [0,∞)→ R, f(x) = x4 − 5x3 + 9x2 − 5x. (2.3.1)

See [108], Example 2. Note that if Φ : C → R and Ψ : C → R are ω-m-star-convex functions and

α, β ∈ R+, then

αΦ + βΨ and sup {Φ,Ψ}

are functions of the same nature. So is

Φ×Ψ : C × C → R, (Φ×Ψ) (x,y) = Φ(x) + Ψ(y).

The class of ω-m-star-convex functions is also stable under pointwise convergence (when it exists).

Assuming C ⊂ E is a convex cone with vertex at the origin, the perspective of a function f : C → R
is the positively homogeneous function

f̃ : C × (0,∞)→ R, f̃(x, t) = tf
(x

t

)
.

Lemma 2.3.1. The perspective of every m-star-convex/concave function is a function of the same

nature.

Proof. Indeed, assuming (to make a choice) that f is ω-m-star-convex, then for all (x, s), (y, t) ∈
C × (0,∞) and λ ∈ [0, 1] we have

f

(
(1− λ)x + λmy

(1− λ)s+ λmt

)
= f

(
(1− λ)s

(1− λ)s+ λmt
· x
s

+
λmt

(1− λ)s+ λmt
· y
t

)
≤ (1− λ)s

(1− λ)s+ λmt
f
(x

s

)
+

λmt

(1− λ)s+ λmt
f
(y

t

)
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that is,

f̃((1− λ)x + λmy, (1− λ)s+ λmt) ≤ (1− λ)f̃(x, s) + λmf̃(y, t).

Lemma 2.3.1, allows us to easily produce nontrivial examples of m-star-convex functions of several

variables with some nice properties. For example, starting from (2.3.1), we conclude that

Φ(x, t) =
x4 − 5x3t+ 9x2t2 − 5xt3

t3

is a (16/17)-star-convex function on [0,∞)× (0,∞).

Under the presence of Gâteaux differentiability, ω-m-star-convex functions generate specific gradient

inequalities that play a prominent role in our generalization of the Hardy-Littlewood-Pólya inequality

of majorization.

Lemma 2.3.2. Suppose also that C is an open convex subset of the Banach space E and Φ : C → R
is a function both Gâteaux differentiable and ω-m-star-convex. Then

mΦ(y) ≥ Φ(x) + dΦ(x)(my − x) +mω (‖x− y‖) , (2.3.2)

for all points x,y ∈ C.

Proof. Indeed, we have

Φ((1− λ)x +mλy)− Φ(x)

λ
≤ −Φ(x) +mΦ(y)−m(1− λ)ω (‖x− y‖)

and the proof ends with passing to the limit as λ→ 0 + .

Remark 10. Lemma 2.3.2 shows that the critical points x of the differentiable ω-m-star–convex

functions are those for which ω ≥ 0 fulfil the property

m inf
y∈C

Φ(y) ≥ Φ(x).

Unlike the case of convex functions of one real variable, when the isotonicity of the differential is

automatic, for several variables, this is not necessarily true in the case of a differentiable convex

function of a vector variable. See [112], Remark 4.

In this section we deal with functions defined on ordered Banach spaces, that is, on real Banach

spaces endowed with order relations ≤ that make them ordered vector spaces such that positive cones

are closed and

0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖ .

The Euclidean N -dimensional space RN has a natural structure of an ordered Banach space associ-

ated to coordinatewise ordering. The usual sequence spaces c0, c, `
p (for p ∈ [1,∞]) and the function

spaces C(K) (for K a compact Hausdorff space) and Lp (µ) (for 1 ≤ p ≤ ∞ and µ a σ-additive posi-

tive measure) are also examples of ordered Banach spaces (with respect to coordinatewise/pointwise

ordering and natural norms).
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A map T : E → F between two ordered vector spaces is called isotone (or order preserving) if

x ≤ y in E implies T (x) ≤ T (y) in F

and antitone (or order reversing) if −T is isotone. When T is a linear operator, T is isotone if and

only if T maps positive elements into positive elements (abbreviated, T ≥ 0).

For basic information on ordered Banach spaces see [113]. The interested reader may also consult

the classical books of Aliprantis and Tourky [9] and Meyer-Nieberg [106].

As was noticed by Amann [10], Proposition 3.2, p. 184, the Gâteaux differentiability offers a conve-

nient way to recognize the property of isotonicity of functions acting on ordered Banach spaces: the

positivity of the differential. We state here his result (following the version given in [112], Lemma 4):

Lemma 2.3.3. Suppose that E and F are two ordered Banach spaces, C is a convex subset of E

with nonempty interior intC and Φ : C → F is a convex function, continuous on C and Gâteaux

differentiable on intC. Then Φ is isotone on C if and only if Φ′(a) ≥ 0 for all a ∈ intC.

Remark 11. If the ordered Banach space E has finite dimension, then the statement of Lemma 2.3.3

remains valid when the interior of C is replaced by the relative interior of C. See [114], Exercise 6,

p. 81.

As was noticed in [108], Example 7, the function

γ : (−∞, 1]→ R, γ(x) = −2x3 + 5x2 + 6x

is convex on (−∞, 5/6], concave on [5/6, 1], and m-star-convex on (−∞, 1], with m = 27/28. The last

assertion follows from a formula due to Mocanu,

m = inf
{xγ′(x)− γ(x)

yγ′(x)− γ(y)
: yγ′(x)− γ(y), x, y ∈ I

}
,

mentioned at the bottom of page 72 in [108].

Proceeding like in Lemma 2.3.1, one can prove that the function associated to γ,

Υ : (−∞, 1]× [1,∞)→ R, Υ(x, y) = −2x3

y2
+

5x2

y
+ 6x,

is 27/28-star-convex. The function Υ is also Gateaux differentiable, with

(x, y) =

(
1

y2

(
−6x2 + 10xy + 6y2

)
,
x2

y3
(4x− 5y)

)
.

According to Lemma 2.3.3, the map

dΥ : (−∞, 1]× [1,∞) ⊂ R2 → R2

is isotone on the domain where d2Υ = d(dΥ) is positive, that is, where the Hessian of Υ,(
− 2
y2

(6x− 5y) 2 x
y3

(6x− 5y)

2 x
y3

(6x− 5y) −2x
2

y4
(6x− 5y)

)
,

has nonnegative entries only. Therefore dΥ is isotone on (−∞, 1]× [1,∞).
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2.3.2 The majorization relation on ordered Banach spaces

In this subsection we discuss the concept of majorization in the framework of ordered Banach spaces.

Since in an ordered Banach space not every string of elements admits a decreasing rearrangement, in

this section will concentrate on the case of pairs of discrete probability measures at least one of which

is supported by a monotone string of points. The case where the support of the left measure consists

of a decreasing string is defined as follows.

Definition 2.3.2. Suppose that
∑N

k=1 λkδxk and
∑N

k=1 λkδyk are two discrete Borel probability mea-

sures that act on the ordered Banach space E and m ∈ (0, 1] is a parameter. We say that
∑N

k=1 λkδxk
is weakly mL↓-majorized by

∑N
k=1 λkδyk (denoted

∑N
k=1 λkδxk ≺wmL↓

∑N
k=1 λkδyk) if the left hand

measure is supported by a decreasing string of points

x1 ≥ · · · ≥ xN (2.3.3)

and
n∑
k=1

λkxk ≤
n∑
k=1

λkmyk for all n ∈ {1, . . . , N}. (2.3.4)

We say that
∑N

k=1 λkδxk is mL↓-majorized by
∑N

k=1 λkδyk (denoted∑N
k=1 λkδxk ≺mL↓

∑N
k=1 λkδyk) if in addition

N∑
k=1

λkxk =
N∑
k=1

λkmyk. (2.3.5)

Notice that the context of Definition 2.3.2 makes it necessary that all the weights λ1, . . . , λN belong

to (0, 1] and
∑N

k=1 λk = 1.

The three conditions (2.3.3), (2.3.4) and (2.3.5) imply myN ≤ xN ≤ x1 ≤ my1 but not the ordering

y1 ≥ · · · ≥ yN . For example, when N = 3, one may consider the case where

m = 1, λ1 = λ2 = λ3 = 1/3, x1 = x2 = x3 = x

and

y1 = x, y2 = x + z, y3 = x− z,

z being any positive element.

Under these circumstances it is natural to introduce the following companion to Definition 2.3.2,

involving the ascending strings of elements as support for the right hand measure.

Definition 2.3.3. The relation of weak mR↑-majorization,

N∑
k=1

λkδxk ≺wmR↑
N∑
k=1

λkδyk ,

between two discrete Borel probability measures means the fulfillment of the condition (2.3.4) under

the presence of the ordering

y1 ≤ · · · ≤ yN ; (2.3.6)

assuming in addition the condition (2.3.5), we say that
∑N

k=1 λkδxk is mR↑-majorized by
∑N

k=1 λkδyk
(denoted

∑N
k=1 λkδxk ≺mR↑

∑N
k=1 λkδyk).
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When every element of E is the difference of two positive elements, the weak majorization relations

≺mL↓and ≺mR↑ can be augmented so as to obtain majorization relations.

2.3.3 The extension of the Hardy-Littlewood-Polya inequality of majorization

The objective of this subsection is to consider the corresponding extensions of the Hardy-Littlewood-

Pólya inequality of majorization for ≺wmL↓ ,≺mL↓ ,≺wmR↑and ≺mR↑ . Moreover, we also present also

a Sherman type inequality.

The proof of the following theorem is inspired by the techniques succesfully used in [101] and [112].

Theorem 2.3.1. Suppose that
∑N

k=1 λkδxk and
∑N

k=1 λkδyk are two discrete probability measures

whose supports are included in an open convex subset C of the ordered Banach space E. If
∑N

k=1 λkδxk ≺mL↓∑N
k=1 λkδyk , then

m
N∑
k=1

λkΦ(yk) ≥
N∑
k=1

λkΦ(xk) +
N∑
k=1

λkω(‖xk − yk‖), (2.3.7)

for every Gâteaux differentiable ω-m-star-convex function Φ : C → F whose differential is isotone and

satisfies the hypotheses of Lemma 2.3.2.

The conclusion (2.3.7) still works under the weaker hypothesis
∑N

k=1 λkδxk ≺wmL↓
∑N

k=1 λkδyk , pro-

vided that Φ is also an isotone function.

Proof. According to the gradient inequality (2.3.2), we have

m
N∑
k=1

λkΦ(yk)−
N∑
k=1

λkΦ(xk) =
N∑
k=1

λk (mΦ(yk)− Φ(xk))

≥
N∑
k=1

Φ′(xk)(λkmyk − λkxk) +

N∑
k=1

λkω (‖xk − yk‖) ,

whence, by using Abel’s trick of interchanging the order of summation ([114], Theorem 1.9.5, p. 57),

one obtains

N∑
k=1

λkmΦ(yk)−
N∑
k=1

λkΦ(xk)−
N∑
k=1

λkω (‖xk − yk‖)

≥ Φ′(x1)(λ1my1 − λ1x1) +
N∑
m=2

Φ′(xm)
[ m∑
k=1

(λkyk − λkxk)−
m−1∑
k=1

(λkyk − λkxk)
]

=

N−1∑
m=1

[
(Φ′(xm)− Φ′(xm+1))

m∑
k=1

(λkmyk − λkxk)
]

+ Φ′(xN )

(
N∑
k=1

(λkmyk − λkxk)

)
.

When
∑N

k=1 λkδxk ≺mL↓
∑N

k=1 λkδyk , the last term vanishes and the fact that D ≥ 0 is a consequence

of the isotonicity of Φ′. When
∑N

k=1 λkδxk ≺wmL↓
∑N

k=1 λkδyk and Φ is isotone, one applies Lemma

2.3.3 to infer that

Φ′(xN )

(
N∑
k=1

(λkmyk − λkxk)

)
≥ 0.
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The other cases can be treated in a similar way.

Remark 12. Even in the context of usual convex functions, the isotonicity of the differential is not

only sufficient but also necessary for the validity of Theorem 2.3.1. See [112], Remark 5.

We leave it to the reader as an exercise to formulate the variant of Theorem 2.3.1 in the case of

relations ≺wmR↑and ≺mR↑ .

2.3.4 Further results and open problems

In the following we mention some open problems which might be of interest for further research on.

Notice first that any perturbation of an ω-m-star-convex function Φ satisfying the hypotheses of

Theorem 2.3.1 by a bounded function Π verify an inequality of majorization very close to (2.3.7).

Precisely, if |Π| ≤ δ and
∑N

k=1 λkδxk ≺mL↓
∑N

k=1 λkδyk , then Ψ = Φ + Π will verify the relation

m

N∑
k=1

λkΦ(yk) ≥
N∑
k=1

λkΦ(xk) +

N∑
k=1

λkω(‖xk − yk‖)− (1 +m)δ.

This call the attention to the following class of approximately ω-m-star-convex functions:

Definition 2.3.4. A function Φ : C → R is said to be δ-ω-m-star-convex function if it verifies an

estimate of the form

Φ((1− λ)x + λmy) ≤ (1− λ)Φ(x) +mλΦ(y)−mλ(1− λ)ω (‖x− y‖) + δ,

for some δ ≥ 0 and all x,y ∈ C and λ ∈ (0, 1).

The above definition extends (for ω = 0 and m = 1) the concept of δ-convex function, first considered

by Hyers and Ulam [75] in a paper dedicated to the stability of convex functions. It is natural to rise

the problem wheather their result extends to the framework of δ-ω-m-star-convex functions:

Problem. Suppose that C is a convex subset of RN . Is that true that every δ-ω-m-star-convex function

Φ : C → R can be written as Φ = Ψ + Π, where Ψ is an ω-m-star-convex function and Π is a bounded

function whose supremum norm is not larger than kNδ , where the positive constant kN depends only

on the dimension N of the underlying space?

Of some interest seems to be the concept of local approximate m-star-convexity suggested by [48],

Definition 1, which clearly yields new extensions of the majorization inequality:

Definition 2.3.5. A function Φ : C → R is called locally approximately m-star-convex if for every

x0 ∈ C, and every ε > 0 there exists δ > 0 such that for all x, y in the open ball of center x0 and

radius δ and all λ ∈ (0, 1),

Φ((1− λ)x+mλy) ≤ (1− λ)Φ(x) +mλΦ(y) + t(1− t) ‖x− y‖ .
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The whole discussion above can be placed in the more general context of Mp-convexity.

Recall that the weighted Mp-mean is defined for every pair of positive numbers a, b by the formula

Mp(a, b; 1− λ, λ) =


((1− λ)ap + λbp)1/p, if p ∈ R\{0}

a1−λbλ, if p = 0

max{a, b}, if p =∞,

where λ ∈ [0, 1]. If p > 0, then it is usual to extend Mp to all pairs of nonnegative numbers.

Definition 2.3.6. A function Φ : C → R is called ω-m-Mp-star-convex if there exist a number p ∈ R
and a modulus ω : [0,∞)→ R such that

Φ ((1− λ) x + λy) ≤ ((1− λ)Φ(x)p +mλΦ(y)p)1/p −mλ(1− λ)ω (‖x− y‖) ,

for all x,y ∈ C and λ ∈ (0, 1).

Reversing the inequality one obtain the concept of ω-m-Mp-star-concave functions.

The usual Mp-convex/Mp-concave functions represent the particular case where m = 1 and ω = 0.

It is worth noticing that the Mp-convex (Mp-concave) functions for p 6= 0 are precisely the functions

Φ such that Φp is convex (concave), while the M0-convex (M0-concave) functions are nothing but the

log-convex (log-concave) functions. Notice also that the M∞-convex (M−∞-concave) functions are

precisely the quasi-convex (quasi-concave) functions.

The next result represents the extension of Lemma 2.3.2 to the case of ω-m-Mp-star-convex functions.

Lemma 2.3.4. Suppose that C is an open convex subset of the Banach space E and Φ : C → R+ is a

function both Gâteaux differentiable and ω-m-Mp-star-convex. If p 6= 0, then Φ verifies the inequality

Φp(y) ≥ Φp(x) + pΦ(x)p−1dΦ(x)(y − x) +mω (‖x− y‖) ,

for all x,y ∈ C.

The analogue of this result for p = 0 and ω = 0 requires the strict positivity of the function Φ and

can be stated as

log Φ(y)− log Φ(x) ≥ dΦ(x)(y − x)

Φ(x)
,

for all x,y ∈ C. The last two inequalities work in the reverse direction in the case of ω-m-Mp-star-

concave functions.

While it is clear that Lemma 2.3.4 allows us to prove Hardy-Littlewood-Pólya type inequalities

more general than those provided by Theorem 2.3.1, the exploration of the world of ω-m-Mp-star-

convex/concave functions for ω 6= 0 and m ∈ (0, 1) is just at the beginning.
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2.4 Convex type inequalities with nonpositive weights

In this section we extend Jensen-Steffensen’s inequality via majorization arguments, into the framework

of Rn, for any n ≥ 2. Generally speaking, our aim is to prove convex type inequalities relaxing the

weights which are allowed to be nonpositive. We are dealing with monotonic increasing or decreasing

sequences with respect to majorization relation in Rn and the well known behaviour under convex

functions invariant on permutation of variables. More precisely, Jensen-Steffensen’s and Sherman’s

type inequalities are obtained, even in the context of strongly convex functions. Moreover, applications

concerning relative convexity aspects and extensions on spaces with curved geometry could be also

derived.

In the twentieth century, an intense research activity and many significant results were obtained in

geometric functional analysis, mathematical economics, convex analysis, and nonlinear optimization.

The classical books [68, 104] played a prominent role related to the subject of convex functions, in

which one of the most relevant topic is devoted to the concept of majorization.

For any two vectors u = (u1, . . . , un) and v = (v1, . . . , vn) let us consider u↓ and v↓ two vectors with

the same entries as u and v, expressed in decreasing order, as

u↓1 ≥ ... ≥ u
↓
n, v

↓
1 ≥ ... ≥ v

↓
n.

We say that, the vector u is majorized by v (abbreviated, u ≺ v) if

k∑
i=1

u↓i ≤
k∑
i=1

v↓i (1 ≤ k ≤ n− 1),

n∑
i=1

u↓i =
n∑
i=1

v↓i .

(2.4.1)

For other relevant details and various applications concerning the majorization theory we refer to

[104]. In this context, the monotonicity with respect to the majorization order is called Schur-convex

property and has been introduced by I. Schur in 1923. It is well known that

u ≺ v iff u = vA,

for some doubly stochastic matrix A = (αij) ∈ Mn,n(R), i.e. a matrix with nonnegative entries and

rows and columns sums equal to 1.

The concept of majorization is a powerful topic of research with relevant results in different areas.

In this regard, we just enumerate few of them: a necessary and sufficient condition for a linear

map to preserve group majorizations can be found in [131]; new majorization results are studied in

[83, 132]; interesting properties on superquadratic functions related to Jensen–Steffensen’s inequality

are obtained in [1]. All these ideas are also based on the theory of uniformly convex functions, which in

addition gives the possibility to define the concept of majorization into the spaces of curved geometry

(see [126]). For other results see [114, 124, 131, 133, 134, 135].

The weighted concept of majorization between two vectors u = (u1, . . . , ul) ∈ I l, v = (v1, . . . , vm) ∈
Im with nonnegative weights a = (a1, . . . , al) ∈ [0,∞)l and b = (b1, . . . , bm) ∈ [0,∞)m, where I is an

interval in R and m, l ≥ 2, has been defined in S. Sherman [160]. The concept of weighted majorization
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is defined by assuming the existence of a columns stochastic matrix A = (αij) ∈Mml(R), i.e. a matrix

with nonnegative entries and columns sums equal to 1, such that

bj =

l∑
i=1

aiαji, (j = 1, . . . ,m), (2.4.2)

ui =
m∑
j=1

vjαji, (i = 1, . . . , l). (2.4.3)

Under conditions (2.4.2)− (2.4.3) it is proved that, the following inequality

l∑
i=1

aif(ui) ≤
m∑
j=1

bjf(vj)

holds for every convex function f : I → R. See [160]. We can write conditions (2.4.2)− (2.4.3) in the

matrix form

b = aAT and u = vA.

In the rest of the section we write

(u,a) ≺ (v,b)

and say that a pair (u,a) is weighted majorized by (v,b) if (2.4.2) − (2.4.3) are satisfied for some

columns stochastic matrix A. Note that, in the case l = 1 and b = [1] we deduce Jensen’s inequality.

When m = l and all weights ai and bj are equal to 1/m, the condition (2.4.2) assures the stochasticity

on rows, so in that case we deal with doubly stochastic matrices.

Since all these above inequalities are dealing with positive weights the study of the case of nonpositive

weights is very challenging. In this context we recall one of the first relevant step, the so called Jensen

Steffensen inequality. We refer to [115] for the following result.

Theorem 2.4.1. Let xn ≤ xn−1 ≤ · · · ≤ x1 be points in [a, b] and let p1, . . . , pn be real numbers such

that the partial sums Sk =
∑k

i=1 pi verify the relations

0 ≤ Sk ≤ Sn and Sn > 0.

Then for every convex functions f : [a, b]→ R we have the inequality

f

(
1

Sn

n∑
k=1

pkxk

)
≤ 1

Sn

n∑
k=1

pkf(xk).

The aim of this section is to present new extensions of the above inequality for the case of finite

dimensional spaces. More precisely, our first aim is to extend Theorem 2.4.1 in the framework of Rn
and then to derive Sherman and Jensen Steffensen’s type inequalities for perturbed convex functions

with complete homogeneous symmetric polynomials. We are very confident that our strategy ca be

also adapted to more general spaces, not only in Rn, but also in spaces with curved geometry.

The structure of the section is at follows: in Subsection 2.4.1 we briefly present and introduction with

the motivation and some preliminaries concerning historical aspects of the main problem we study;

Subsection 2.4.2 is devoted to Jensen Steffensen’s inequalities in the framework of Rn via majorization

concept; in Subsection 2.4.3 we present some application related to Sherman’s inequalities when the
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weights can be chosen to be nonpositive and also to Jensen Steffensen’s type inequalities for perturbed

convex functions with complete homogeneous symmetric polynomials; Subsection 2.4.4 presents some

conclusions and further applications related to relative convexity aspects and the possibility to transfer

similar results into the spaces with curved geometry.

2.4.1 An extension of Jensen-Steffensen’s inequality context in Rn via majoriza-
tion ordering

In this subsection we introduce majorization concept in order to present a general strategy which allow

us to extend Jensen-Steffensen inequality from R to multidimensional space Rn. More precisely, we

prove our first result, given by an extension of the Jensen-Steffensen inequality.

The following lemma is used to prove the main result of this section.

Lemma 2.4.1. For any U1, U2, · · · , Um doubly stochastic matrices in Mn,n(R) we have

U1x1 + U2x2 + · · ·+ Umxm ≺ x1 + x2 + · · ·+ xm,

for any x1, . . . ,xm ∈ Rn.

Proof. If we denote by u1 = U1x1, . . . , um = Umxm we need to prove that

u1 + u2 + · · ·+ um ≺ x1 + x2 + · · ·+ xm.

Since ui ≺ xi, using (2.4.1), for any i = 1, . . . ,m, and summing up all the inequalities we get the

conclusion.

In the following sentences we recall some basic facts relevant in our context.

Remark 13. Note that, every convex function defined on Rn admits one sided directional derivatives

at any point and, moreover, ∂f(a) is singleton precisely when f has directional derivative f ′(a; v) and,

in that case we have that ∂f(a) consists of the mapping v → f ′(a; v).

Based on [115, Remark 3.6.1.], we have that

f ′+(a; v) ≥ 〈d, v〉 ≥ f ′−(a; v) (a, v ∈ Rn, d ∈ ∂f(a)) ,

where

f ′±(a; v) = lim
t→0+

f(a+ tv)− f(a)

t
(a, v ∈ Rn, d ∈ ∂f(a)) ,

and z belongs to the subdifferential of f at the point a, namely ∂f(a), means that

f(x) ≥ f(a) + 〈x− a, z〉 (x ∈ Rn) .

Hence, taking into account the above relations we get

f(z) ≥ f(y) + 〈d, z− y〉 (x ≺ y ≺ z, d ∈ ∂f(x)) , (2.4.4)
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f(z) ≤ f(y) + 〈d, z− y〉 (y ≺ z ≺ x, d ∈ ∂f(x)) . (2.4.5)

Moreover, using the linearity of the scalar product we can also have

〈v, z− y〉 ≥ 〈u, z− y〉 ≥ 0 (a ≺ b, y ≺ z, u ∈ ∂f(a), v ∈ ∂f(b)) .

Inspired from [115] we shall use the following notation related to z1, . . . , zm ∈ Rn and p1, . . . , pm ∈ R:

z̄ = p1z1 + · · ·+ pmzm,

Pk = p1 + · · ·+ pk (k ∈ {1, 2, . . . ,m}) ,
P̄k = pk + · · ·+ pm (k ∈ {1, 2, . . . ,m}) .

Definition 2.4.1. We say that a sequence z1, . . . , zm ∈ Rn is monotonic decreasing with respect to

majorization relation iff the following relations hold

zm ≺ zm−1 ≺ · · · ≺ z2 ≺ z1. (2.4.6)

We are now in position to present the extension of Jensen-Steffensen’s type inequality in Rn.

Theorem 2.4.2. Let I be an interval in R and m, n ≥ 1. If f : In → R is a convex function invariant

under permutation of coordinates, then for every z1, . . . , zm ∈ In, which is monotonic decreasing

with respect to majorization relation, and every real m-tuple p = (p1, . . . , pm) such that, for every

i ∈ {1, 2, . . . ,m} we have

0 ≤ Pi ≤ Pm = 1,

then the following inequality holds

f

(
m∑
i=1

pizi

)
≤

m∑
i=1

pif (zi) .

Proof. From (2.4.6) we infer the existence of A1, A2, · · · , Am−1 doubly stochastic matrices inMn,n(R)

such that

z2 = A1z1,

z3 = A2z2,

...

zm = Am−1zm−1.

Hence, we have that

z̄ = p1z1 + · · ·+ pmzm

= (p1In + p2A1 + · · ·+ pn−1An−2 · · ·A1 + pmAm−1 · · ·A1) z1,

hence, we deduce that z̄ ≺ z1, based on the fact that the matrix p1In+p2A1 + · · ·+pn−1An−2 · · ·A1 +

pmAm−1 · · ·A1 is doubly stochastic.

On the other hand, we have that

zm = pmzm + (p1 + · · ·+ pm−1) zm = pmzm + pm−1Am−1zm−1 + (p1 + · · ·+ pm−2) zm = . . .
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= pmzm + pm−1Am−1zm−1 + · · ·+ p1Am−1 · · ·A1z1.

Hence, we have that

pmzm + pm−1Am−1zm−1 + · · ·+ p1Am−1 · · ·A1z1 ≺ p1z1 + p2z2 + · · ·+ pmzm.

More precisely, if we choose in Lemma 2.4.1, x1 = p1z1, x2 = p2z2, . . . ,xm = pmzm, Um =

Im, Um−1 = Am−1, . . . , U1 = Am−1 · · ·A1, we get zm ≺ z̄.

Thus, we just have proved that

zm ≺ z̄ ≺ z1.

Inspired from [115, Theorem 1.5.6.], f is convex and invariant under permutation of coordinates,

then by using [126, Theorem 5] we have that

f (zm) ≤ f (z̄) ≤ f (z1) ,

hence, we infer the existence of an index l such that

f (zm) ≤ · · · ≤ f (zl+1) ≤ f (z̄) ≤ f (zl) ≤ · · · ≤ f (z1) . (2.4.7)

Following the idea in the proof of [115, Theorem 1.5.6.], for any d ∈ ∂f(z̄), using (2.4.9), we have

f

(
m∑
i=1

pizi

)
−

m∑
i=1

pif (zi)

≤
l−1∑
i=1

Si (〈d, zi − zi+1〉 − f(zi) + f(zi+1))

+Sl (〈d, zl − z̄〉 − f(zl) + f(z̄))

+S̄l+1 (f(z̄)− f(zl+1)− 〈d, z̄− zl+1〉)

+

m−1∑
i=l+1

S̄i+1 (f(zi)− f(zi+1)− 〈d, zi − zi+1〉) ,

where S̄i = Sm − Si.

Using (2.4.4)-(2.4.5) from Remark 13 we get that all the above terms are nonpositive real numbers

and the conclusion follows easily.

For the convenience of the reader we also present some details for the case of increasing sequences

with respect to the majorization relation.
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Theorem 2.4.3. If f : In → R is a convex function invariant under permutation of coordinates, then

for every z1, . . . , zm ∈ In, which is monotonic increasing with respect to majorization relation, and

every real m-tuple p = (p1, . . . , pm) such that, for every i ∈ {1, 2, . . . ,m} we have

0 ≤ Pi ≤ Pm = 1,

then the following inequality holds

f

(
m∑
i=1

pizi

)
≤

m∑
i=1

pif (zi) .

Proof. From (2.4.6) we infer the existence of A1, A2, · · · , Am−1 doubly stochastic matrices inMn,n(R)

such that

zm−1 = Amzm,

zm−2 = Am−1zm−1,

...

z2 = A3z3,

z1 = A2z2.

Hence, we have that

z̄ = p1z1 + · · ·+ pmzm (2.4.8)

= (p1A2 · · ·Am + p2A3 · · ·Am + . . . pm−1Am + pmIn) zm,

hence, we deduce that z̄ ≺ zm, based on the fact that the matrix p1A2 · · ·Am + p2A3 · · ·Am +

. . . pm−1Am + pmIn is doubly stochastic.

On the other hand, we have that

z1 = p1z1 + (p2 + · · ·+ pm) z1 = p1z1 + p2A2z2 + (p3 + · · ·+ pm) z1

= · · · = p1z1 + p2A2z2 + · · ·+ pmA2 · · ·Amzm,

It follows that

p1z1 + p2A2z2 + · · ·+ pmA2 · · ·Amzm ≺ p1z1 + p2z2 + · · ·+ pmzm,

where we have used Lemma 2.4.1, for x1 = p1z1, x2 = p2z2, . . . ,xm = pmzm, U1 = Im, U2 =

A2, . . . , Um = A2 · · ·Am. Hence, we get z1 ≺ z̄. Thus, we just have proved that

z1 ≺ z̄ ≺ zm.

Inspired from [115, Theorem 1.5.6.], f is convex and invariant under permutation of coordinates,

then by using [126] we have

f (z1) ≤ f (z̄) ≤ f (zm) ,

we infer the existence of an index l such that

f (z1) ≤ · · · ≤ f (zl) ≤ f (z̄) ≤ f (zl+1) ≤ · · · ≤ f (zm) . (2.4.9)

Now, using the similar argument as in the proof of Theorem 2.4.2 the same conclusion holds.
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Example 2. Let us consider the following vectors in Rn which verify

z1 ≺ z2 ≺ · · · ≺ zn−1 ≺ zn,

where

z1 =

(
1

n
,

1

n
, . . . ,

1

n
,

1

n

)
,

z2 =

(
0,

1

n
, . . . ,

1

n
,

2

n

)
,

. . .

zn−1 =

(
0, 0, . . . ,

1

n
,
n− 1

n

)
,

zn = (0, 0, . . . , 0, 1) .

By choosing the weights

(p1, p2, . . . pn) =

(
n− 1

n
,− 1

n
, . . . ,− 1

n
,
n− 1

n

)
,

which can be nonpositive and verifies the hypotheses in Theorem 2.4.2. Hence, for any convex function

invariant under permutation of coordinates f : In → R, we have

f

(
n− 1

n2
,
n− 2

n2
,
n− 3

n2
. . . ,

1

n2
,
−3n2 + 7n− 2

n2

)

≤ n− 1

n

(
f

(
1

n
,

1

n
, . . . ,

1

n
,

1

n

)
+ f (0, 0, . . . , 0, 1)

)
− 1

n

n−1∑
i=2

f(zi).

2.4.2 Sherman’s type inequalities with nonpositive weights

In this subsection we develop the result from the previous section for the case of nonpositive weights,

in different situations. The first step is introduce the weighted concept of majorization between two

n-tuples x = (x1, ..., xl), y = (y1, . . . , ym), where z1, . . . , zl ∈ In, y1, . . . ,ym ∈ In, with real weights

a = (a1, . . . , al) ∈ Rl (which can be nonpositive) and b = (b1, . . . , bm) ∈ [0,∞)m, where I is an interval

in R and m, l ≥ 2.

We define the concept of weighted majorization (x,a) ≺ (y,b) by considering any matrix A = (αij) ∈
Mml(R), verifying

0 ≤ Aik ≤ Amk = 1, (1 ≤ k, i ≤ m) (2.4.10)

where

Aik = α1i + · · ·+ αki (k ∈ {1, 2, . . . ,m}) (1 ≤ k ≤ m), (2.4.11)

such that

bj =
l∑

i=1

aiαji, (j = 1, . . . ,m), (2.4.12)

xi =

m∑
j=1

yjαji, (i = 1, . . . , l). (2.4.13)

We can present now the extension of Sherman’s inequality in Rn, when the weights are allowed to

be nonpositive.



CHAPTER 2. NEW MAJORIZATION RESULTS ON HD STRONGLY CONVEX FUNCTIONS68

Theorem 2.4.4. If

xm ≺ xm−1 ≺ · · · ≺ x2 ≺ x1. (2.4.14)

and let us suppose that conditions (2.4.10)-(2.4.13) are satisfied. Then, the following inequality

l∑
i=1

aif(xi) ≤
m∑
j=1

bjf(yj)

holds for every convex function f : In → R which is invariant under permutation of coordinates.

Proof. As in the proof of Theorem 2.4.2 we can deduce that

xm ≺ ȳj ≺ x1 (j = 1, . . . ,m),

which means that we can use Jensen-Steffensen’s inequality and we obtain

f

( m∑
j=1

αjiyj

)
≤

m∑
j=1

αjif(yj) (i = 1, . . . , l).

Taking into account (2.4.2) − (2.4.3) and applying Theorem 2.4.2 for each zi, i = 1, ..., l, where

zi =
∑m

j=1 pjyj , pj = αji, we get

l∑
i=1

aif (xi) =
l∑

i=1

aif

 m∑
j=1

yjαji


≤

l∑
i=1

ai

 m∑
j=1

αjif (yj)

 =

m∑
j=1

f (yj)

l∑
i=1

aiαji.

Consequently, since bj =
∑l

i=1 aiαji we have

l∑
i=1

aif (xi) ≤
m∑
j=1

bjf (yj) .

2.4.3 The case of h2 strongly convex functions

The second topic we address in this section is related to the study of a perturbed family of convex

functions by complete homogeneous symmetric polynomials with even degree, which are positive.

Inspired from the strategy used in [1, 2, 3, 30, 83, 15] we have the following result.

Theorem 2.4.5. (Jensen-Steffensen’s type inequality) Let C > 0 and let I be an interval in R. If

f : In → R is h2 strongly convex with modulus C and invariant under permutation of coordinates, then
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for every monotonic sequence z1, . . . , zm ∈ In, as in (2.4.6), and every real n-tuple p = (p1, . . . , pm)

such that, for every i ∈ {1, 2, . . . ,m}, 0 ≤ Pi ≤ Pm = 1 the following inequality holds:

f

(
m∑
i=1

pizi

)
≤

m∑
i=1

pif (zi)− C
m∑
i=1

pih2 (zi − z̄) ,

where z̄ is defined in (2.4.8).

Proof. As in the proof of Theorem 2.4.2 we can obtain that

zm ≺ z̄ ≺ z1,

which means that g : In → R, where g (z̄) = g (
∑n

i=1 pizi) is well defined.

Using the convexity of the function g(·) = f(·)−ch2(·), as in Definition of h2 strongly convex function,

and applying Jensen-Steffensen’s inequality, we obtain

g

( m∑
i=1

pizi

)
≤

m∑
i=1

pig(zi).

Going back to f , we get

f

( m∑
i=1

pizi

)
− Ch2

( m∑
i=1

pizi

)
≤

m∑
i=1

pi(f(zi)− Ch2(zi))

=
m∑
i=1

pif(zi)− C
m∑
i=1

pih2(zi),

or written differently

f

( n∑
i=1

pizi

)
≤

m∑
i=1

pif(zi)− C
[ m∑
i=1

pih2(zi)− h2

( m∑
i=1

pizi

)]

=

m∑
i=1

pif (zi)− C
m∑
i=1

pi
2

( n∑
k=1

zki

)2

+

n∑
k=1

(
zki

)2


+
C

2

( n∑
i=1

m∑
k=1

pkz
i
k

)2

+

n∑
i=1

(
m∑
k=1

pkz
i
k

)2


=
m∑
i=1

pif (zi)−
C

2

 m∑
i=1

pi

(
n∑
k=1

zki

)2

−

(
m∑
i=1

pi

n∑
k=1

zki

)2


−C
2

 n∑
i=1

(
m∑
k=1

pk
(
zik
)2)− n∑

i=1

(
m∑
k=1

pkz
i
k

)2
 .
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Now, inspired from [15, Theorem 2] we can treat the above last two terms as follows: for any

ui =
n∑
k=1

zki

and

ū =
m∑
i=1

piui,

we have the following identity

m∑
i=1

pi (ui)
2 − (ū)2 =

m∑
i=1

pi(ui − ū)2,

hence, it follows that

f

(
m∑
i=1

pizi

)
≤

m∑
i=1

pif (zi)− C
m∑
i=1

pih2 (zi − z̄) .

Using our extension of Sherman’s results (for nonpositive weights) we can deduce Sherman’s inequality

for h2 strongly convex functions with modulus C.

Theorem 2.4.6. (Sherman’s type inequality) Let C > 0 and let I be an interval in R. Let z =

(z1, . . . , zl), y = (y1, . . . ,ym), where z1, . . . , zl ∈ In, y1, . . . ,ym ∈ In and let a = (a1, . . . , al) ∈ Rl and

b = (b1, . . . , bm) ∈ [0,∞)m be such that (y,b) ≺ (z,a). If in addition we assume that

zm ≺ zm−1 ≺ · · · ≺ z2 ≺ z1. (2.4.15)

then for every f : In → R h2 strongly convex with modulus C and invariant under permutation of

coordinates we have

l∑
i=1

bif(yi) ≤
m∑
j=1

ajf(zj)− C
l∑

i=1

bi

m∑
j=1

αjih2(zj − yi).

Proof. From (2.4.2)− (2.4.3) and using Theorem 2.4.5 for each yi, i = 1, . . . , l, where yi =
∑l

j=1 pjzj ,

pj = αji, we have

l∑
i=1

bif (yi) =
l∑

i=1

bif

 m∑
j=1

zjαji


≤

l∑
i=1

bi

 m∑
j=1

αjif (zj)− C
m∑
j=1

αjih2 (zj − yi)


=

l∑
i=1

bi

m∑
j=1

αjif (zj)− C
l∑

i=1

bi

m∑
j=1

αjih2 (zj − yi)

=
m∑
j=1

f (zj)
l∑

i=1

biαji − C
l∑

i=1

bi

m∑
j=1

αjih2 (zj − yi) .
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Hence, using that aj =
∑l

i=1 biαji we get

l∑
i=1

bif (yi) ≤
m∑
j=1

ajf (zj)− C
l∑

i=1

bi

m∑
j=1

αjih2 (zj − yi) .

2.4.4 Conclusions and applications

The point of departure in this subsection is given by the possibility to define the weighted concept

of majorization within a class of spaces with curved geometry (in which compare the the length of a

median of a triangle to the lengths of its sides).

Using a similar strategy as in the previous sections our future aim will be to prove that convex type

inequalities hold even in global NPC spaces, for some nonpositive weights. This could pe done taking

into account the following remarks and properties of this spaces.

Definition 2.4.2. A global NPC space is a complete metric space M = (M,d) for which the following

inequality holds true: for every pair of points x0, x1 ∈ M there exists a point y ∈ M such that for all

points z ∈M,

d2(z, y) ≤ 1

2
d2(z, x0) +

1

2
d2(z, x1)− 1

4
d2(x0, x1). (2.4.16)

Here ”NPC” stands for ”nonpositive curvature”. Global NPC spaces are also known as CAT(0)

spaces or Hadamard spaces. For more details, the interested reader may consult the excellent survey

of Sturm [163] (and also the books of Ballman [17], Bridson and Haefliger [32], and Jost [80]).

Not that in a global NPC space, each pair of points x0, x1 ∈ M can be connected by a geodesic

(that is, by a rectifiable curve γ : [0, 1] → M such that the length of γ|[s,t] is d(γ(s), γ(t)) for all

0 ≤ s ≤ t ≤ 1). Moreover, this geodesic is unique.

The point y that appears in Definition 2.4.1 is the midpoint of x0 and x1 and has the property

d(x0, y) = d(y, x1) =
1

2
d(x0, x1).

An important role here is played by the inequality (2.4.16), which assures the uniform convexity of

the square distance. See Bhatia [25]. Every Hilbert space is a global NPC space. Its geodesics are the

line segments and y = x0+x1
2 . In general, a Riemannian manifold is a global NPC space if and only

if it is complete, simply connected and of nonpositive sectional curvature. Besides manifolds, other

important examples of global NPC spaces are the Bruhat-Tits buildings (in particular, the trees). See

[32].

Definition 2.4.3. A set C ⊂ M is called convex if γ([0, 1]) ⊂ C for each geodesic γ : [0, 1] → M

joining the points γ(0), γ(1) ∈ C.

A function f : C → R is called convex if C is a convex set and for each geodesic γ : [0, 1] → C the

composition ϕ ◦ γ is a convex function in the usual sense, that is,

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1))
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for all t ∈ [0, 1].

The function f is called concave if −f is convex.

We remark that Jensen’s inequality works in the context of global NPC spaces (despite the fact that

the property of associativity of convex combinations fails). A probabilistic approach is made available

by the paper of Sturm [163]. The main ingredient here is the barycenter of a discrete probability

measures λ =
∑n

i=1 λiδxi is defined by the formula

bar(λ) = arg min
z∈M

1

2

n∑
i=1

λid
2(z, xi).

In the case of Hilbert spaces, this coincides with the usual definition of barycenter in flat spaces, that

is,
∑n

i=1 λixi.

Theorem 2.4.7. (The discrete form of Jensen’s Inequality). For every continuous convex function

f : M → R and every discrete probability measure λ =
∑n

i=1 λiδxi on M, we have the inequality

f(bar(λ)) ≤
n∑
i=1

λif(xi).

The result of Theorem 2.4.7 is a particular case of the integral form of Jensen’s Inequality, which was

first noticed by Jost [79] (and later extended by Eells and Fuglede [55]).

In what follows we shall deal with the relation of weighted majorization ≺, for pairs of discrete

probability measures. See [126], for an extension of the Hardy-Littlewood-Pólya Theorem to the

context of global NPC spaces.

Taking into account the barycenter of a discrete probability measures λ =
∑n

i=1 λiδxi , which works in

the context of global NPC spaces only for positive weights (λi)i with
∑n

i=1 λi = 1, our future aim is to

extend the above concept of barycenter to real weights, chosen in a similar way as in Jensen-Steffensen’s

inequality from this section.

The second future aim is related cu a relaxed concept of convexity, namely relative convexity. In

[118] we discuss the availability of Jensen’s inequality in a nonconvex context, in which we emphasize

the usefulness of the concept of point of convexity. Even in the case of spaces with a curved geometry

we have successfully introduced the point of convexity. In [124] we have discussed the meaning of the

relative convexity notion.

We briefly present here the main ideas which will be used to treat the case of nonpositive weights in

this context.

Definition 2.4.4. Let f : M → R be a continuous function. A point a ∈ M is a point of convexity

of the function f if

f(a) ≤
n∑
i=1

λif(xi), (2.4.17)

for every family of points x1, . . . , xn in M and every family of positive weights λ1, . . . , λn with
∑n

i=1 λi =

1 and bar (
∑n

i=1 λiδxi) = a.
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The point a is a point of concavity if it is a point of convexity for −f (equivalently, if the above

inequality works in the reversed way).

An example which illustrate the meaning of the above concept is offered by the function f(x) = xex.

This function is concave on (−∞,−2] and convex on [−2,∞) (attaining a global minimum at x = −1).

Every point a ≥ −1 is a point of convexity because the tangent line y = T (x) at the point (a, aea)

gives supporting line for the graph of the function. A simple computation show that

f(a) = T (a) = T

(
n∑
i=1

λixi

)
=

n∑
i=1

λiT (xi) ≤
n∑
i=1

λif(xi),

for every x1, . . . , xn ∈ R and λ1, . . . , λn ∈ [0, 1] such that
∑n

i=1 λi = 1 and a =
∑n

i=1 λixi ≥ −1.

Other interesting connections between the subdifferential of the function and the notion of relative

convexity can be found in [118]. More precisely, if a function admits a supporting hyperplane at a

point a, then a is a point of convexity. In other words, every point at which the subdifferential is

nonempty is a point of convexity. For other details, see for instance, [46, 82, 170, 171]. In this context,

another future aim is to put in the same context the existence of the point of convexity of a function

with the weakly or strongly convexity property. This could be done via the notion of subdifferential,

which is somehow connected with the modulus C from the definition of weakly or strongly convexity.

The choose of the optimal constant here is also another interesting purpose to be done.



Chapter 3

Jensen Steffensen’s inequalities on

spaces with curved geometry

3.1 On metric spaces of nonpositive curvature

In the first part of this chapter, we present some preliminary notions related to metric spaces of

nonpositive curvature (”NPC spaces”), but also a discussion of barycenters of probability measures

on such spaces. We will concentrate on analytic and stochastic aspects of nonpositive curvature. We

are inspired by [163].

3.1.1 Geodesic spaces

We say that a curve in a metric space (N, d) is a continuous map ρ : I → N where I ⊂ R is some interval

and we define its length Ld(ρ) as the supremum of
∑n

k=1 d(ρλk , ρλk−1
) where λ0 ≤ λ1 ≤ · · · ≤ λn and

λ0, . . . , λn ∈ I.

A curve is called geodesic if and only if

d(ρµ, ρλ) = d(ρµ, ρν) + d(ρν , ρλ),

for all µ, ν, λ ∈ I with µ < ν < λ. Or otherwise written, iff Ld(ρ|[ν,λ]) = d(ρν , ρλ) for all ν, λ ∈ I with

ν < λ.

In the sense of Reimannian geometry, that geodesics are only required to minimize locally the length

(i.e. the above holds true only if | ν − λ | is sufficiently small) whereas geodesics in our sense are

always globally minimizing the length.

A curve ρ : [a, b]→ N connects the points y, z ∈ N if and only if ρa = y and ρb = z and this implies

that Ld(ρ) ≥ d(y, z).

Definition 3.1.1. A metric space is called a length space (or inner metric space) if and only if for

all y, z ∈ N we have

d(y, z) = inf
ρ
Ld(ρ),

74
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where the infimum is taken over all curves which connect y and z. It is called a geodesic space if and

only if each pair of points y, z ∈ N is connected by a curve ρ of length Ld(ρ) = d(y, z). This curve is

not required to be unique.

Proposition 3.1.1. A complete metric space (N, d) is a geodesic space if and only if ∀z0, z1 ∈ N ,

∃t ∈ N such that

d(z0, t) = d(z1, t) =
1

2
(z0, z1).

In this context, any point t ∈ N with the above properties will be called midpoint of z0 and z1.

Proof. Given z0, z1 ∈ N , we obtain their midpoint z1/2 ∈ N . Then the points x1/4 and z3/4 are

obtained as midpoints of z0 and z1/2 or z1/2 and z1 respectively. Using this algorithm, we obtain the

points zλ for all dyadic λ ∈ [0, 1] and obviously

d(zµ, zλ) = d(zµ, zν) + d(zν , zλ),

for all dyadic 0 ≤ µ < ν < λ ≤ 1. By completeness of N , it yields the existence zλ ∈ N for all λ ∈ [0, 1]

such that z : [0, 1]→ N is a geodesic.

Remark 14. Note that a characterization in terms of ”approximate midpoints” similar to Proposition

3.1.1 holds true for length spaces:

A complete metric space (N, d) is a length space or geodesic space if and only if for all z0, z1 ∈ N
and ε > 0 (or for ε = 0 respectively) there exists y ∈ N such that

d2(z0, y) + d2(z1, y) ≤ 1

2
d2(z0, z1) + ε.

Let (N, d) be a geodesic space.

Definition 3.1.2. A set N0 ⊂ N is called convex iff ρ([0, 1]) ⊂ N0 for each geodesic ρ : [0, 1] → N

with ρ0, ρ1 ∈ N0. A function f : N → R is called convex iff the function f ◦ ρ : [0, 1] → R is convex

for each geodesic ρ : [0, 1]→ N , that is iff ∀λ ∈ [0, 1]

f(ρλ) ≤ (1− λ)f(ρ0) + λf(ρ1).

Proposition 3.1.2. For f : N → R define its epigraph

Epif = {(z, µ) ∈ N × R : f(z) ≤ µ} ⊂ N × R.

Then

(i) f is convex if and only if Nf is convex.

(ii) f is lower semicontinuous if and only if Nf is closed.

Proof. (i) Let Nf a subset of the space N̂ = N × R with the metric

d((z, µ), (y, ν)) = (d2(z, y)+ | µ− ν |2)1/2.
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Thus, ρ̂ : [0, 1] → N̂ is a geodesic if and only if ρ̂(λ) = (ρ(λ), c0 + c1λ) with a geodesic ρ : [0, 1] → N

and c0, c1 ∈ R. Further consider ρ̂ be a geodesic with ρ̂(0), ρ̂(1) ∈ Nf , that is with

f ◦ ρ(0) ≤ c0 and f ◦ ρ(1) ≤ c0 + c1.

Convexity of f : N → R implies convexity of f ◦ ρ : [0, 1]→ R and this in turn

f ◦ ρ(λ) ≤ c0 + c1λ,

or, in other words, f̂(λ) ∈ Nf . This provides the convexity on Nf .

Conversely, we assume that Nf is convex. Let ρ : [0, 1]→ N be any geodesic. Choose

c0 = f ◦ ρ(0), c1 = f ◦ ρ(1)− f ◦ ρ(0) and ρ̂(λ) := (ρ(λ), c0 + c1λ).

Then ρ̂(0), ρ̂(1) ∈ Nf and thus also ρ̂ ∈ Nf . Previous results states that

f ◦ ρ(λ) ≤ c0 + c1λ = (1− λ)f ◦ ρ(0) + λf ◦ ρ(1),

for all λ ∈ [0, 1]. That is, f ◦ ρ : [0, 1] → R is convex for each geodesic ρ : [0, 1] → N and thus

f : N → R is convex.

(ii) Nf is closed ⇐⇒ (ẑn → ẑ, ẑn ∈ Nf =⇒ ẑ ∈ Nf ) ⇐⇒ (zn → z, µn → µ =⇒ f(z) ≤ µ) ⇐⇒ f

is lower semicontinuous.

Definition 3.1.3. A function f : N → R is called uniformly convex if and only if there exists a

strictly increasing function η : R+ → R+ such that for any geodesic ρ : [0, 1]→ N

f(ρ1/2) ≤ 1

2
(f(ρ0) + f(ρ1))− η(d(ρ0, ρ1)).

A function f is called strictly convex iff for any geodesic ρ : [0, 1]→ N with ρ0 6= ρ1

f(ρ1/2) <
1

2
(f(ρ0) + f(ρ1)).

Proposition 3.1.3. Let f : N → R be a uniformly convex, lower semicontinuous function on a

complete geodesic space (N, d). Then there exists a unique minimizer t ∈ N , i.e. a unique point t ∈ N
with f(t) = infw∈N f(w). We write

t = arg min
w∈N

f(w).

Proof. (i) Existence: Let tn be a sequence of points in N with limn f(tn) = inft f(t) := α and let tn,k
the midpoint between tn and tk.

For n, k →∞ we have that

α ≤ f(tn,k) ≤
1

2
f(tn) +

1

2
f(tk)− η(d(tn, tk)).

Hence, d(tn, tk) → 0 for n, k → ∞. In other words, (tn)n is a Cauchy sequence, so there exists

t∗ = limn→∞ tn ∈ N since N is complete. Moreover, f(t∗) = inft f(t) by lower semicontinuity of f.

(ii) Uniqueness: Assume that f(t0) = f(t1) = inft f(t) = α and t0 6= t1. We get the contradiction

α ≤ f(t 1
2
) < 1

2α+ 1
2α, for t 1

2
the midpoint between t0 and t1.
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Remark 15. For the uniqueness of the minimizer it is suffices to require that f is strictly convex. If

N is compact then for the existence of the minimizer it is suffices to require that f is convex and lower

semicontinuous.

Definition 3.1.4. A geodesic space (N, d) is called doubly convex if and only if the function d :

(z, y) → d(z, y) is convex on N × N or, in other words, iff the function λ → d(ρλ, ηλ) is convex for

each pair of geodesics ρ, η : [0, 1] → N . It is called strictly doubly convex if and only if d is strictly

convex on N ×N .

Remark 16. (i) In a doubly convex geodesic space, any two of its points are joined by a unique

geodesic and this geodesics depends continuously on its endpoints.

(ii) If a geodesic space is locally doubly convex and simply connected then it is doubly convex [55, 64].

Let (M,M) be a measurable space and (N, d) be a metric space. A map v : M → N is called

measurable if and only if it is measurable with respect to the given σ-field M on M and the Borel

σ-field B(N) on N, i.e. iff v−1(N
′
) ∈ M for all N

′ ∈ B(N). Note that for the latter it suffices that

v−1(N
′
) ∈M for all open N

′ ⊂ N .

3.1.2 Global NPC spaces

Inspired by Sturm [163], we present an introduction to metric spaces of nonpositive curvature, NPC

spaces, with emphasis on analytic and stochastic aspects of nonpositive curvature. In this context, we

use the explicit estimates for the distance function, we do not deal with triangle or angle comparison

and we do not introduce the tangent cone or the space of directions.

For the many and deep geometric aspects we refer to the huge literature on NPC spaces. The whole

development started with the investigations of A. D. Alexandrov [7] and Yu. G. Reshetnyak [147] and

was strongly influenced by the work of M. Gromov [63]. Recently, there appeared various monographs

devoted exclusively to NPC spaces: [17], [32] and [80]. Also the monographs [16, 33, 55] contain much

material on this subject. Moreover, we recommend the articles [6, 79, 87].

Definition 3.1.5. A metric space (N, d) is called global NPC space if it is complete and if for each

pair of points z0, z1 ∈ N there exists a point y ∈ N with the property that for all points t ∈ N we have

that

d2(t, y) ≤ 1

2
d2(t, z0) +

1

2
d2(t, z1)− 1

4
d2(z0, z1). (3.1.1)

In this context, ”NPC” means nonpositive curvature. Global NPC spaces are also called Hadamard

spaces. Property (3.1.1) is called the NPC inequality and it can be weakened.

Remark 17. A complete metric space (N, d) is a global NPC space if and only if for all z0, z1 ∈ N
and ε > 0 there exists y ∈ N such that for all t ∈ N we have that

d2(t, y) ≤ 1

2
d2(t, z0) +

1

2
d2(t, z1)− 1

4
d2(z0, z1) + ε. (3.1.2)

Proposition 3.1.4. If (N, d) is a global NPC space then is a geodesic space. Even more, for any pair

of points z0, z1 ∈ N there exists a unique geodesic z : [0, 1] → N connecting them. For λ ∈ [0, 1] the

intermediate points zλ depend continuously on the endpoints z0, z1. Finally, for any t ∈ N we have

d2(t, zλ) ≤ (1− λ)d2(t, z0) + λd2(t, z1)− λ(1− λ)d2(z0, z1). (3.1.3)
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Figure 3.1: NPC inequality

For the convenience of the reader we present the proof given in [163].

Proof. (i) Choosing t = z0 or t = z1 in (3.1.1) yields

d(z0, z1/2) ≤ 1

2
d(z0, z1) and d(z2, z1) ≤ 1

2
d(z0, z1).

Whence, z2 is a midpoint and (N, d) is a geodesic space. Choosing t to be any other midpoint of z0

and z1 yields d(t, z1/2) = 0. That is, midpoints are unique and thus also geodesic are unique.

(ii) Given any geodesic z : [0, 1]→ N it suffices to prove (3.1.3) for all dyadic λ ∈ [0, 1]. It obviously

holds for λ = 0 and λ = 1. Assume that it holds for all λ = k2−n with k = 0, 1, ..., 2n. We want to

prove that then (3.1.3) also holds for all λ = k2−(n+1) for all λ = k2−n with k = 0, 1, ..., 2n+1. For

even k this is just the assumption. Fix λ = k2−(n+1) with an odd k and put ∆λ = 2−(n+1). Then by

(3.1.1) we have that

d2(t, z1/2) ≤ 1

2
d2(t, zλ−∆λ) +

1

2
d2(t, zλ+∆λ)− 1

4
d2(zλ−∆λ, zλ+∆λ)

and by (3.1.3)

d2(t, zλ±∆λ) ≤ (1− λ∓∆λ)d2(t, z0) + (λ±∆λ)d2(t, z1)− (1− λ∓∆λ)(λ±∆λ)d2(z0, z1)

Thus

d2(t, zλ) ≤ (1− λ)d2(t, z0) + λd2(t, z1)

−
[
(∆λ)2 − 1

2
(1− λ−∆λ)(λ+ ∆λ)− 1

2
(1− λ+ ∆λ)(λ−∆λ)

]
d2(z0, z1)

= (1− λ)d2(t, z0) + λd2(t, z1)− λ(1− λ)d2(z0, z1).
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Figure 3.2: Geodesic comparison

(iii) Now let z, y : [0, 1]→ N be two geodesics. Then applying (3.1.3) twice yields

d2(zλ, yλ) ≤ (1− λ)d2(z0, yλ) + λd2(z1, yλ)− λ(1− λ)d2(z0, z1)

≤ (1− λ)2d2(z0, y0) + λ2d2(z1, y1)

+λ(1− λ)[d2(z0, y1) + d2(z1, y0)− d2(z0, z1)− d2(y0, y1)].

Obviously, the right hand side converges to 0 if y0 → z0 and y1 → z1, and thus yλ → zλ, that is zλ
depends continuously on z0 and z1.

Corollary 5. (Geodesic Comparison). Let (N, d) be a global NPC space, ρ, η : [0, 1]→ N be geodesics

and λ ∈ [0, 1]. Then

d2(ρλ, ηλ) ≤ (1− λ)d2(ρ0, η0) + λd2(ρ1, η1)− λ(1− λ)[d(ρ0, ρ1)− d(η0, η1)2 (3.1.4)

and

d(ρλ, ηλ) ≤ (1− λ)d(ρ0, η0) + λd(ρ1, η1).

Proof. We use what we demonstrated in part (iii) of Proposition 3.1.4 and we have that

d2(ρλ, ηλ)− (1− λ)2d2(ρ0, η0)− λ2d2(ρ1, η1)

≤ λ(1− λ)[d2(ρ0, η1) + d2(ρ1, η0)− d2(ρ0, ρ1)− d2(η0, η1)].

By quadruple comparison, the right hand side is

≤ λ(1− λ)
[
d2(ρ0, η0) + d2(ρ1, η1)

−µ(d(ρ0, η0)− d(ρ1, η1))2 − (1− µ)(d(ρ0, ρ1)− d(η0, η1))2
]
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for each µ ∈ [0, 1]. For µ = 0 this yields the Reshetnyak’s quadruple comparison and for µ = 1 it

yields

d2(ρλ, ηλ) ≤ (1− λ)d2(ρ0, η0) + λd2(ρ1, η1)− λ(1− λ)[d(ρ0, η0)− d(ρ0, η1)]2

= [(1− λ)d(ρ0, η0) + λd(ρ1, η1)]2.

Inequality (3.1.4) assert that d is doubly convex, i.e. (z, y)→ d(z, y) is a convex function on N ×N .

We have some obvious consequences:

(i) For each t ∈ N the function z → d(z, t) is convex; in particular, all balls Br(t) ⊂ N are convex.

(ii) Geodesics depend continuously on their endpoints in the following quantitative way:

d∞(η, ρ) = sup{d(η0, ρ0), d(η1, ρ1)},

where for any curves η, ρ : [0, 1]→ N we put d∞(η, ρ) := sup{d(ηλ, gλ) : λ ∈ [0, 1]}.

(iii) N is contractible and, in particular, simply connected.

Proposition 3.1.5. (Convex Projection).

(i) For each convex closed set K ⊂ N in a global NPC space (N, d) there exists a unique map

πK : N → K (”projection onto K”) with

d(πK(t), t) = inf
w∈K

d(w, t) (t ∈ N);

(ii) πK is ”orthogonal”:

d2(t, w) ≥ d2(t, πK(t)) + d2(πK(t), w) (t ∈ N,w ∈ K);

(iii) πK is a contraction:

d(πK(t), πK(w)) ≤ d(t, w) (t, w ∈ N).

Proof. (i) Fix t ∈ N and a closed convex set K ⊂ N . Then K is a global NPC space and the function

f : K → R, z → d2(z, t) is continuous and uniformly convex on K. Hence there exists a unique

minimizer in K.

(ii) Let λ → wλ be a geodesic joining w0 := πK(t) and w1 := w. Then wλ ∈ K for all λ ∈ [0, 1] by

convexity and closedness of K. Hence, by the NPC inequality

d2(πk(t), t) ≤ d2(wλ, t) ≤ (1− λ)d2(πK(t), t) + λd2(w, t)− λ(1− λ)d2(πK(t), w)

and therefore

d2(πk(t), t) + (1− λ)d2(πK(t), w) ≤ d2(w, t).

(iii) Put t′ = πK(t), w′ = πK(w). Then (ii) and quadruple comparison imply

d2(t, w) + d2(w,w′) + d2(w′, t′) + d2(t′, t) ≥ d2(t, w′) + d2(t′, w) ≥ d2(t, t′) + d2(w,w′) + 2d2(w′, t′),

which yields the claim.
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Figure 3.3: Convex projection

The important fact here is the existence of a unique projection without assuming any kind of com-

pactness of K.

Remark 18. (i) Given any subset A ⊂ N in a global NPC space (N, d), there exists a unique

smallest convex set C(A) containing A, called convex hull of A. It can be constructed as C(A) =⋃∞
n=0An where A0 := A and for n ∈ N , the set An consists of all points in N which lie on

geodesics which start and end in An−1.

(ii) Given any bounded subset A ⊂ N in a global NPC space (N, d) there exists a unique closed ball

of minimal radius which contains A. In other words, there exists a unique point z ∈ N (the

circumcenter of A) such that

r(z,A) = inf
t∈N

r(t, A),

where r(t, A) := supy∈A d(t, y). This is an immediate consequence of Proposition 3.1.3 since the

function t→ r2(t, A) is uniformly convex.

3.1.3 Examples of global NPC spaces

This subsection, inspired by Sturm [163] gives some examples of global NPC spaces. The main

examples, in our context, are manifolds, trees and Hilbert spaces. Other examples are cones, buildings

and surfaces of revolution. New global NPC spaces can be built out of given global NPC spaces as

subsets, images, gluings, products or L2-spaces.

Proposition 3.1.6. (Manifolds). Let (N, d) be a Reimannian manifold and let d be its Reimannian

distance. Then (N, d) is a global NPC space if and only if it is complete, simply connected and of

nonpositive (sectional) curvature.

Besides manifolds, the most important examples of NPC spaces are trees, in particular, spiders.
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Figure 3.4: The 5-spider

Example 3. (Spiders). Let K be an arbitrary set and for each i ∈ K let Ni = {(i, µ) : µ ∈ R+} be a

copy of R+ (equipped with the usual metric). Define the spider over K or K-spider (N, d) by gluing

together all these spaces Ni, i ∈ K, at their origins, i.e.

N = {(i, µ) : i ∈ K,µ ∈ R+}/ ∼ where (i, 0) ∼ (j, 0)(∀i, j)

and

d((i, µ), (j, ν)) =

{
|µ− ν| if i = j

|µ|+ |ν|, else.

The rays Ni can be regarded as closed subsets of N. Any two rays Ni and Nj with i 6= j intersect at

the origin o := (i, 0) = (j, 0) of N.

The K-spider N depends (upto isometry) only on the cardinality of K. If K = {1, . . . , k} for some

k ∈ N then it is called k-spider. It can be realized as a subset of the complex plane{
µ · exp

(
l

k
2πi

)
∈ C : µ ∈ R+, l ∈ {1, . . . , k}

}
,

however, equipped with a non-Euclidian metric. If k = 1 or k = 2 then it is isometric to R+ or R,

respectively. The 3-spider is also called tripod.

Proposition 3.1.7. (Trees). Each metric tree is a global NPC space.

Proof. We have to prove the NPC inequality (3.1.1) for each triple of points z0, z1, t ∈ N . Without

restriction, we may replace N by the convex hull of these three points which is isometric to the convex

hull of three points in the tripod. That is, without restriction N is the tripod.

Firstly, consider the case where z0, z1, t lie on one geodesic ρ : I → N . Then ρ is an isometry between

I ⊂ R and ρ(I) ⊂ N . Since I is globally NPC, so is ρ(I). Actually, I and thus ρ(I) are even ”flat”,
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i.e.

d2(t, z1/2) =
1

2
d2(t, z0) +

1

2
d2(t, z1)− 1

4
d2(z0, z1),

for all z0, z1, t ∈ ρ(I) and with z1/2 being the midpoint of z0, z1.

Secondly, consider the non-degenerate case z0 = (i, µ), z1 = (j, ν) and t = (k, λ) with µ ·ν ·λ > 0 and

different i, j, k ∈ {1, 2, 3}. Assume without restriction µ ≥ ν and put t′ = (j, λ). Then z0, z1/2 ∈ Ni

and t′ ∈ Nj . The points z0, z1, t
′ lie on one geodesic. Therefore, by the previous considerations

d2(t′, z1/2) =
1

2
d2(t′, z0) +

1

2
d2(t′, z1)− 1

4
d2(z0, z1).

Moreover, d(z0, t) = d(z0, t
′) and d(z1/2, t) = d(z1/2, t

′) whereas d(z1, t) ≥ d(z1, t
′). Hence, finally,

d2(t, z1/2) = d2(t′, z1/2) =
1

2
d2(t′, z0) +

1

2
d2(t′, z1)− 1

4
d2(z0, z1)

≤ 1

2
d2(t, z0) +

1

2
d2(t, z1)− 1

4
d2(z0, z1).

Proposition 3.1.8. (Hilbert spaces).

(i) Each Hilbert space is a global NPC space.

(ii) A Banach space is a global NPC space if and only if it is a Hilbert space.

(iii) A metric space is (derived from) a Hilbert space is and only if it is a nonempty, geodesically

complete global NPC space with curvature ≥ 0. One possible (of many equivalent) definitions for

the latter is to require that in (3.1.1) also the reverse inequality holds true.

Proof. (i) Choosing z1/2 = 1
2(z0 + z1) yields equality in (3.1.1):∣∣∣∣t− z0 + z1

2

∣∣∣∣2 =
1

2
|t− z0|2 +

1

2
|t− z1|2 −

1

4
|z0 − z1|2.

(ii) Assume that N is a Banach and global NPC space. Given z0, z1 ∈ N , one (and hence the unique)

midpoint is z1/2 = z0+z1
2 . Then choosing t = 0 in (3.1.1) yields

|z0 − z1|2 + |z0 + z1|2 ≤ 2|z0|2 + 2|z1|2,

which is a ”parallelogram inequality”. Replacing z0 and z1 in this inequality by z0 + z1 and z1 − z1,

respectively, yields the opposite inequality and thus proves the parallelogram equality.

(iii) The ”only if”-implication is easy. For the ”if”-implication fix an arbitrary point o ∈ N . Then

for each z ∈ N there exists a unique geodesic z : R→ N with z0 = o and z1 = z. Using these geodesics

we define a scalar multiplication by β · z := zβ (∀β ∈ R, z ∈ N), an addition by z + y := midpoint of

2 · z and 2 · y (∀z, y ∈ N), and an inner product by

〈z, y〉 :=
1

2
(d2(z, y)− d2(o, z)− d2(o, y)) (∀z, y ∈ N).

For details, see [87].

Lemma 3.1.1. (Subsets). A subset N0 ⊂ N of a global NPC space N is a global NPC space if and

only if it is closed and convex.
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3.1.4 Barycenters on global NPC spaces

Inspired by Sturm [163], we present some theoretical aspects related to barycenters on global NPC

spaces.

Let (N, d) be a complete metric space and let P(N) denote the set of all probability measures p

on (N,B(N)) with separable support supp(p) ⊂ N . For 1 ≤ θ < ∞, Pθ(N) will denote the set of

p ∈ P(N) with
∫
dθ(z, y)p(dy) < ∞ for some z ∈ N , and P∞(N) will denote the set of all p ∈ P(N)

with bounded support. Finally, we denote by P0(N) the set of all p ∈ P(N) of the form p = 1
n

∑n
i=1 δzi

with suitable zi ∈ N . Here and henceforth, δz : A → 1A(z) denote the Dirac measure in the point

z ∈ N . Obviously,

P0(N) ⊂ P∞(N) ⊂ Pθ(N) ⊂ P1(N).

For q ∈ P(N) the number var(q) := inft∈N
∫
N d

2(t, z)q(dz) is called variance of q. Of course, q ∈
P2(N) if and only if var(q) <∞.

Given p, q ∈ P(N) we say that γ ∈ P(N2) is a coupling of p and q iff its marginals are p and q, that

is, iff ∀A ∈ B(N)

γ(A×N) = p(A) and γ(N ×A) = q(A). (3.1.5)

One such coupling γ is the product measure p⊗ q.

Definition 3.1.6. We define the (L1–) Wasserstein distance or Kantorovich-Rubinstein distance dW

on P1(N) by

dW (p, q) = inf

{∫
N

∫
N
d(z, y)γ(dzdy) : γ ∈ P(N2) is coupling of p and q

}
.

Proposition 3.1.9. Let (N, d) be a global NPC space and fix y ∈ N . For each q ∈ P1(N) there exists

a unique point t ∈ N which minimizes the uniformly convex, continuous function t →
∫
N [d2(t, z) −

d2(y, z)]q(dz). This point is independent of y; it is called barycenter (or, more precisely, d2-barycenter)

of q and denoted by

b(q) = arg min
t∈N

∫
N

[d2(t, z)− d2(y, z)]q(dz).

If q ∈ P2(N) then b(q) = arg mint∈N d
2(t, z)q(dz).

Proof. Let Fy(t) =
∫

[d2(t, z)− d2(y, z)]q(dz). Then

Fy(t)− Fy′(t) =

∫
[d2(y′, z)− d2(y, z)]q(dz)

is dependent of t. Moreover, |Fy(t) <∞| since

|Fy(t)| =
∣∣∣∣ ∫

N
[d(t, z)− d(y, z)] · [d(t, z) + d(y, z)]q(dz)

∣∣∣∣
≤ d(t, y) ·

[ ∫
N
d(t, z)q(dz) +

∫
N
d(y, z)q(dz)

]
.

The uniform convexity of t→ d2(t, z) as stated in Proposition 3.1.4 implies that t→ Fy(t) is uniformly

convex: For any two points t0, t1 ∈ N let λ→ tλ denote the geodesic. Application of (3.1.3) gives

Fy(tλ) =

∫
[d2(tλ, z)− d2(y, z)]q(dz)
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≤ (1− λ)

∫
[d2(t0, z)− d2(y, z)]q(dz) + λ

∫
[d2(t1, z)− d2(y, z)]q(dz)

−λ(1− λ)d2(t0, t1)

= (1− λ)Fy(t0) + λFy(t1)− λ(1− λ)d2(t0, t1).

Moreover, continuity of t→ Fy(t) is obvious from

|Fy(t)− Fy(t′)| ≤
∫
N
|d2(t, z)− d2(t′, z)|q(dz).

According to Proposition 3.1.3, uniform convexity and lower semicontinuity of Fy implies existence

and uniqueness of a minimizer.

Proposition 3.1.10. (Variance Inequality). Let (N, d) be a global NPC space. For any probability

measure q ∈ P1(N) and for all t ∈ N :∫
N

[d2(t, z)− d2(b(q), z)]q(dz) ≥ d2(t, b(q)). (3.1.6)

Proof. Given q and t, apply the estimate from the previous proof with t1 := t, t0 := b(q) and y := b(q).

The fact that b(q) is minimizer yields

0 ≤ F (tλ) ≤ 0 + λ · F (t)− λ(1− λ)d2(t, b(q)).

That is, for all λ > 0 ∫
N

[d2(t, z)− d2(b(q), z)]q(dz) ≥ (1− λ)d2(t, b(q)).

For λ→ 0 this yields the claim.

Now, we want to present another natural way to define the ”expectation” EY of a random variable

Y is to use generalization of the law of large numbers. This requires to give a meaning to 1
n

∑n
i=1 Yi.

Our definition below only uses the fact that any two points in N are joined by unique geodesics. Our

law of large numbers for global NPC spaces gives convergence towards the expectation defined as

minimizer of the L2 distance.

Definition 3.1.7. Given any sequence (yi)i∈N of points in N we define a new sequence (vn)n∈N of

points vn ∈ N by induction on n as follows:

v1 := y1 and vn :=

(
1− 1

n

)
vn−1 +

1

n
yn,

where the RHS should denote the point ρ1/n on the geodesic ρ : [0, 1] → N connecting ρ0 = vn−1 and

ρ1 = yn. The point vn will be denoted by 1
n

∑→
i=1,...,n yi and called inductive mean value of y1, . . . , yn.

Note that in general the point 1
n

∑→
i=1,...,n yi will strongly depend on permutations of the yi.

Theorem 3.1.1. (Law of Large Numbers). Let (Yi)i∈N be a sequence of independent, identically

distributed random variables Yi ∈ L2(Ω, N) on a probability space (Ω,A,P) with values in a global

NPC space (N, d). Then

1

n

→∑
i=1,...,n

Yi → EY1 for n→∞,
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in L2(Ω, N) and in probability (”weak low of a large numbers”).

If moreover Yi ∈ L∞(Ω, N) then for P-almost every ω ∈ Ω

1

n

→∑
i=1,...,n

Yi(ω)→ EY1 for n→∞.

Finally, we will give various characterizations of nonpositive curvature in terms of properties of

probability measures on the spaces. For instance, the validity of a variance inequality turns out to

characterize NPC spaces. Similarly, an inequality between two kind of variances as well as a weighted

quadruple inequality.

Theorem 3.1.2. Let (N, d) be a complete metric space. Then the following properties are equivalent:

(i) (N, d) is a global NPC space.

(ii) For any probability measure q ∈ P2(N) there exists a point tq ∈ N such that for all t ∈ N∫
N
d2(t, z)q(dz) ≥ d2(t, tq) +

∫
N
d2(tq, z)q(dz). (3.1.7)

(iii) For any probability measure q ∈ P(N)

var(q) ≤ 1

2

∫
N

∫
N
d2(z, y)q(dz)q(dy).

(iv) (N, d) is a length space with the property that for any z1, z2, z3, z4 ∈ N and ν, λ ∈ [0, 1]

ν(1− ν)d2(z1, z3) + λ(1− λ)d2(z2, z4)

≤ νλd2(z1, z2) + (1− ν)λd2(z2, z3) + (1− ν)(1− λ)d2(z3, z4) + ν(1− λ)d2(z4, z1)

The proof will show that in (iii) it suffices to consider probability measures q which are supported

by four points and in (iv) it suffices to consider λ = 1
2 .

Proof. (i) =⇒ (ii) : We use corollary 3.1.6.

(ii) =⇒ (i): Given points ρ0, ρ1 ∈ N and λ ∈ [0, 1], choose the probability measure q = (1−λ)δρ0 +

λδρ1 and denote the point tq by ρλ. Then (ii) implies for all t ∈ N

(1− λ)d2(t, ρ0) + λd2(t, ρ1) ≥ (1− λ)d2(ρλ, ρ0) + λd2(ρλ, ρ1) + d2(ρλ, t)

≥ (1− λ)λd2(ρ0, ρ1) + d2(ρλ, t),

where the last inequality is a simple consequence of the triangle inequality. This proves (i).

(ii) =⇒ (iii): If var(q) = ∞ then
∫
N d

2(z, y)q(dz) = ∞ for all y ∈ N and the claim follows.

Therefore, we may assume var(q) <∞. In this case, the claim follows from integrating (3.1.9) against

q(dt).

(iii) =⇒ (iv): Let ρ0, ρ1 be any two points in N and ε > 0. Choose the probability measure

q = 1
2δρ0 + 1

2δρ1 . Then (iii) implies that there exists a point t ∈ N with

d2(t, ρ0) + d2(t, ρ1) ≤ 1

2
d2(ρ0, ρ1) + ε.
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According to Remark 14, this already implies that (N, d) is a length space.

To see the second claim, choose

q =
1

2
[νδz1 + λδz2 + (1− ν)δz3 + (1− λ)δz4 ].

Then for each ε > 0, (iii) implies that for suitable t ∈ N

1

8
[νλd2(z1, z2) + (1− ν)λd2(z2, z3) + (1− ν)(1− λ)d2(z3, z4)

+ν(1− λ)d2(z4, z1) + ν(1− ν)d2(z1, z3) + λ(1− λ)d2(z2, z4)] + ε

≥ 1

4
[νd2(t, z1) + λd2(t, z2) + (1− ν)d2(t, z3) + (1− λ)d2(t, z4)]

≥ 1

4
[ν(1− ν)d2(z1, z3) + λ(1− λ)d2(z2, z4)],

where again the last inequality is a simple consequence of the triangle inequality. Since this holds for

any ε > 0 it proves the claim.

(iv) =⇒ (i): The fact that (N, d) is a length space implies that, given ρ0, ρ1 ∈ N and ν > 0, there

exists y ∈ N such that

d2(ρ0, y) + d2(ρ1, y) ≤ 1

2
d2(ρ0, ρ1) + ν2.

For arbitrary t ∈ N , apply (iv) to z1 = t, z2 = ρ1, z3 = y, z4 = ρ0 and λ = 1
2 . It yields

ν(1− ν)d2(t, ρλ) ≤ ν

2
d2(t, ρ1) +

ν

2
d2(t, ρ0) +

1− ν
2

d2(y, ρ1) +
1− ν

2
d2(y, ρ0)− 1

4
d2(ρ0, ρ1)

≤ ν

2
d2(t, ρ1) +

ν

2
d2(t, ρ0)− ν

4
d2(ρ0, ρ1) +

ν2

2
(1− ν).

Dividing by ν and the letting ν → 0 this yields the claim.

Proposition 3.1.11. (Hilbert spaces). If N is a Hilbert space then for each q ∈ P1(N)

b(q) =

∫
N
zq(dz)

in the sense that

〈b(q), y〉 =

∫
N
〈z, y〉q(dz) (y ∈ N).

Note that this identity is true for probability measures. Let m be a measure on (N,B(N)) with 0 <

m(N) <∞. Then the barycenter b(m) of m can be defined as before by

b(m) = arg min
t∈N

∫
N

[d2(t, z)− d2(0, z)]m(dz),

which yields

b(m) =
1

m(N)

∫
N
zm(dz).
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Proof. Recall that b(q) is a unique minimizer of

F : t→
∫
N

[d2(t, z)− d2(0, z)]q(dz) =

∫
N
||t− z||2 − ||z||2q(dz).

Hence, t = b(q) if and only if

d

dε
F (t+ εy)|ε=0 = 2

∫
N
〈y, t− z〉q(dz) = 0,

for all y ∈ N .

Recall that every separable Hilbert space is either isomorphic to some Euclidian space Rk or to the

space l2. In other words, it is isomorphic to
⊗

i∈K R with a finite or countable set K. By the preceding

b(q) = (b(qi))i∈K with b(qi) =
∫
R zqi(dz) =

∫
N ziq(dz) where zi and qi denote the projection of z and

q, respectively, onto the i-th factor of N .

Before studying arbitrary trees, we will have a look on spiders. Let K be an arbitrary set and N be

the corresponding K-spider. Given q ∈ P1(N) we define numbers

νi(q) :=

∫
Ni

d(o, z)q(dz), bi(q) := νi(q)−
∑
j 6=i

νj(q)

for i ∈ K. (The point bi(q) is the usual mean value of the image of q in R in Ni is identified with R+

and all the other Nj are glued together and identified with R−.) Note that bi(q) > 0 for at most one

i ∈ K.

Proposition 3.1.12. (Spiders). If bi(q) > 0 for some i ∈ K then b(q) = (i, bi(q)). Otherwise,

b(q) = o.

Proof. Fix q and i. If b(q) = (i, ν0) for some ν0 > 0 then ν → F (ν), where

F (ν) :=

∫
N
d2((i, ν), z)q(dz) =

∫
Ni

(ν − d(o, z))2q(dz) +
∑
j 6=i

∫
Nj

(ν + d(o, z))2q(dz),

attains its minimum on ]0,∞[ in ν = ν0. The latter implies

0 =
1

2
F ′(ν0) =

∫
Ni

(ν0 − d(0, z))q(dz) +
∑
j 6=i

∫
Nj

(ν0 + d(0, z))q(dz)

= ν0 − νi(q) +
∑
j 6=i

νj(q) = ν0 − bi(q),

and thus ν0 = bi(q). Similarly, b(q) = o implies F ′(0) ≥ 0 and thus 0 ≥ bi(q).

Remark 19. The k-spider has the following remarkable property:

Let p =
∑k

i=1 αi · pi ∈ P1(N) be a convex combination of pi ∈ P(Ni), i = 1, . . . , k, for suitable αi > 0

with
∑k

i=1 αi = 1 and put p̄ =
∑k

i=1 αi · δb(pi). Then

b(p) = b(p̄).
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Indeed, with the notations from above

νi(p̄) =

∫
N
d(o, z)p̄(dz) = αi · d(o, b(pi)) = αi

∫
N
d(o, z)pi(dz) = νi(p),

for each i and hence the claim follows. Here the crucial point is that each pi is supported by a flat

space Ni.

3.1.5 Jensen’s inequality and L1 contraction property

Note that throughout this subsection (N, d) will always be a global NPC space.

Proposition 3.1.13. If a probability measure q ∈ P1(N) is supported by a convex closed set K ⊂ N

then its barycenter b(q) lies in K. In particular, if supp(q) ⊂ B̄r(z) then b(q) ∈ B̄r(z).

Proof. Assume that b(q) /∈ K. Then by Proposition 3.1.5∫
[d2(b(q), z)− d2(y, z)]q(dz) ≥

∫
[d2(πK(b(q)), z)− d2(y, z)]q(dz)

which contradicts the minimizing property of b(q).

Theorem 3.1.3. (Jensen’s inequality). For any lower semicontinuous convex function f : N → R
and any q ∈ P1(N)

f(b(q)) ≤
∫
N
f(z)q(dz),

provided the RHS is well-defined.

The above RHS is well-defined if either
∫
f+dq <∞ or

∫
f−dq <∞. In particular, it is well-defined

if f is Lipschitz continuous.

If
∫
fdq <∞ is well-defined then in Jensen’s inequality we may assume without restriction that f is

bounded from below and
∫
|f |dq < ∞. Indeed, the assumption implies that

∫
fdq = limk→∞

∫
fkdq

with fk := f ∨ (−k) being bounded from below and convex. Furthermore,
∫
f+dq = ∞ would imply∫

fdq =∞ in which case Jensen’s inequality is trivially true.

Inspired by [163], we will present two entirely different, elementary proofs.

Proof. (First proof following [55]). Given f and q as above, let N̂ = N × R and Nf = {(z, λ) ∈ N̂ :

f(z) ≤ λ} which is a closed convex subset of the global NPC space N̂ .

Put f̂ : N → N̂ , z → (z, f(z)) and let q̂ = q ◦ f̂−1 be the image of the probability measure q under

the map f̂ . Without restriction, we may assume
∫
N |f(z)|q(dz) < ∞. Then f̂ ∈ P1(N̂) since for

t̂ = (t, λ) ∈ N̂ ∫
N
d(t̂, ẑ)q̂(dẑ) ≤

∫
N

[d(t, z) + |λ− f(z)|]q(dz) <∞.

We have that

b(q̂) =

(
b(q),

∫
N
f(z)q(dz)

)
.

Moreover, supp(q̂) ∈ Nf ; hence we have that b(q̂) ∈ Nf . That is, f(b(q)) ≤
∫
N f(z)q(dz).
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Proof. (Second proof). Now for simplicity assume q ∈ P2(N) and
∫
N f

2(z)q(dz) < ∞. The general

case follows by an approximation argument. Choose a probability space (Ω,A,P) and an iid sequence

(Yi)i of a random variables Yi : Ω→ N with distribution PYi = q. Put

Zi := f(Yi)

Sn :=
1

n

→∑
i=1,...,n

Yi

Tn :=
1

n

n∑
i=1

Zi.

Then by the weak law of large numbers (for N -valued and for R-valued random variables, respectively)

Sn → EY1 = b(q), Tn → Ef(Y1) =

∫
fdq

in probability. Further, we claim that

f(Sn) ≤ Tn.

Indeed, this is true for n = 1 and follows for general n by induction:

f(Sn+1) = f

(
n

n+ 1
Sn +

1

n+ 1
Yn+1

)
≤ n

n+ 1
f(Sn) +

1

n+ 1
f(Yn+1)

≤ n

n+ 1
Tn +

1

n+ 1
Zn+1 = Tn+1,

where we only used the convexity of f along geodesics. Therefore, by lower semicontinuity of f

f(b(q)) ≤ lim inf
n→∞

f(Sn) ≤ lim inf
n→∞

Tn =

∫
fdq.

Theorem 3.1.4. (Fundamental Contraction Property), For all p, q ∈ P1(N):

d(b(p), b(q)) ≤ dW (p, q). (3.1.8)

Proof. Given p, q ∈ P1(N) consider φ ∈ P1(N2) with marginals p and q. Then b(φ) = (b(p), b(q)).

Thus Jensen’s inequality with the convex function d : N2 → R yields

d(b(p), b(q)) = d(b(φ)) ≤
∫
N2

d(z)φ(dz).

Therefore, d(b(p), b(q)) ≤ dW (p, q).

Example 4. (Barycenter Map of Es-Sahib & Heinich). Let (N, d) be a locally compact, global NPC

spaces. Then one can define recursively for each n ∈ N a unique map βn : Nn → N satisfying

(i) βn(z1, . . . , z1) = z1,
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(ii) d(βn(z1, . . . , zn), βn(y1, . . . , yn)) ≤ 1
n

∑n
i=1 d(zi, yi),

(iii) βn(z1, . . . , zn) = βn(ž1, . . . , žn) where x̌i := βn−1(z1, . . . , zi−1, zi+1, . . . , zn).

This map is invariant under permutation of coordinates and satisfies

d(t, βn(z1, . . . , zn)) ≤ 1

n

n∑
i=1

d(t, zi) (t ∈ N).

3.1.6 The integral form of Jensen’s inequality

We want to extend Jensen’s inequality to the general framework of finite measure spaces. Note that

this subsection is inspired from [116].

Remember that a finite measure space is any triplet (Ω,Σ, µ) consisting of an abstract nonempty set

Ω, a σ-algebra Σ of subsets of Ω and a σ-additive measure µ : Σ → R+ such that µ(Ω) > 0. We can

reduce the study of finite measure spaces to that of probability spaces, characterized by the fact that

µ(Ω) = 1 by replacing µ with µ/µ(Ω).

Remark 20. The language of traditional measure theory is slightly different from that of measure-

theoretic probability theory. In the books of probability theory we find the notation (Ω,Σ, P ) for a

probability space consisting of a sample space Ω, a σ-algebra Σ of events (viewed as subsets of Ω) and

a probability measure P : Σ→ R+. Note that in the probabilistic context, the real measurable functions

X : Ω → R are called random variables. Their definitory property is that X−1(A) ∈ Σ for every

Borel subset A of R. Remark that, in probability theory, an important point is the use of the notion

of independence.

Jensen’s inequality gives us two important concepts that can be attached to a finite measure space

(Ω,Σ, µ): the integral arithmetic mean and the barycenter. The integral arithmetic mean or the mean

value of a µ-integrable function f : Ω→ R is defined by the formula

M1(f) =
1

µ(Ω)

∫
Ω
f(z)dµ(z).

This number is also called the expectation or expected value of f and is denoted E(f). The expectation

generates a functional E : L1(µ)→ R having the following three properties:

(i) E(αf + βg) = αE(f) + βE(g), (Linearity);

(ii) f ≥ 0 implies E(f) ≥ 0, (Positivity);

(iii) E(1) = 1 (Calibration).

We introduce the expectation of a real-valued function f ∈ L1(µ) using the Riemann-Stieltjes integral

and the key ingredient is the cumulative distribution function of f , which is defined by the formula

F : R→ [0, 1], F (z) = µ({ω : f(ω) ≤ z});



CHAPTER 3. JENSEN STEFFENSEN’S INEQUALITIES ON SPACESWITH CURVEDGEOMETRY92

on several occasions we will use the notation Ff instead of F , to specify the integrable function under

attention.

Remark that, this function is increasing and its limits at infinity are limz→−∞ F (z) = 0 and

limz→∞ F (z) = 1. Also, the cumulative distribution function is right continuous, that is,

lim
z→z+0

F (z) = F (z0) at every z0 ∈ R.

The distribution function allows us to introduce the expectation of a random variable by a formula

that avoids the use of measure theory:

E(f) =

∫ ∞
−∞

zdFf (z).

For convenience, the concept of barycenter will be introduced in the context of probability measures

µ defined on the σ-algebra B(I) of Borel subsets of an interval I. More exactly, we will consider the

class

P1(I) = {µ : µ Borel probability measure on I and

∫
I
|z|dµ(z) <∞}.

This class includes all Borel probability measures null outside a bounded subinterval.

Definition 3.1.8. The barycenter of a Borel probability measure µ ∈ P1(I) is the real point

bar(µ) =

∫
I
zdµ(z).

Necessarily, when the barycenter bar(µ) exists, it must be in I. Indeed, if bar(µ) /∈ I, then either

bar(µ) is an upper bound for I or it is a lower bound. Since∫
I
[z − bar(µ)]dµ(z) = 0.

this situation will impose z− bar(µ) = 0 µ-almost everywhere, which is not possible because µ(I) = 1.

Using Definition 3.1.8 we can present a first example concerns the case of a discrete probability

measure λ =
∑n

k=1 λkδzk concentrated at the points z1, . . . , zn ∈ R. Here δt represents the Dirac

measure concentrated at t, that is, the measure given by

δt(A) = 1 it t ∈ A and δt(A) = 0 otherwise.

In this case,

E(f) =

∫
R
f(z)dλ(z) =

n∑
k=1

λkf(zk),

for every continuous function f : R→ R. Hence

bar(λ) =

∫
R
zdλ(z) =

n∑
k=1

λkzk.

The barycenter of the restriction of Lebesque measure to an interval [a, b] is the middle point because

1

b− a

∫ b

a
zdz =

a+ b

2
.
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The barycenter of the Gaussian probability measure 1√
2π
e−z

2/2 is the origin. Indeed,

1√
2π

∫ ∞
−∞

ze−z
2/2dz = 0.

Theorem 3.1.5. (The integral form of Jensen’s inequality) Let (Ω,Σ, µ) be a probability space and let

g : Ω→ R be a µ-integrable function. If f is a convex function defined on an interval I that includes

the image of g, then E(g) ∈ I and

f(E(g)) ≤
∫

Ω
f(g(z))dµ(z).

Notice that the right hand side integral always exists but it might be ∞ if the µ-integrable of f ◦g is not

expressly asked. When both functions g and f ◦ g are µ-integrable, then the above inequality becomes

f(E(g)) ≤ E(f ◦ g).

Furthermore, if in addition f is strictly convex, then this inequality becomes an equality if and only if

g is constant µ-almost everywhere.

Corollary 6. If µ ∈ P1(I) and f : I → R is a µ-integrable convex function, then

f(bar(µ)) ≤
∫
I
f(z)dµ(z).

Corollary 7. (The Hermite-Hadamard inequality for arbitrary Borel probability measures; [56])

Suppose that f : [a, b]→ R is a convex function and µ is Borel probability measure on [a, b]. Then

f(bar(µ)) ≤
∫ b

a
f(z)dλ(z) ≤ b− bar(µ)

b− a
· f(a) +

bar(µ)− a
b− a

· f(b).

Remark 21. (Differential entropy) We assume that (Ω,Σ, P ) is a probability space. Let f : [0,∞)→
R, f(z) = z log z a convex function. By applying Jensen’s inequality, we obtain the following upper

estimate for the differential entropy h(g) = −
∫

Ω g log gdµ of a positive µ-integrable function g:

h(g) ≤ −
(∫

Ω
gdµ

)
log

(∫
Ω
gdµ

)
.

If
∫

Ω gdµ = 1, then h(g) ≤ 0 even though the function f has a variable sign, it attains the minimum

value −1
e at t = 1

e .

A natural question is how large is the Jensen gap

E(f ◦ g)− f(E(g)).

The following result noticed by O. Hölder [73] provides the answear in an important spacial case.

Proposition 3.1.14. Suppose that f : [a, b] → R is a twice differentiable function for which there

exist real constants m and M such that m ≤ f ′′ ≤M . Then

m

2

∑
1≤i<j≤n

λiλj(zi − zj)2 ≤
n∑
k=1

λkf(zk)− f
( n∑
k=1

λkzk

)
≤ M

2

∑
1≤i<j≤n

λiλj(zi − zj)2,

whenever z1, . . . , zn ∈ [a, b], λ1, . . . , λn ∈ [0, 1] and
∑n

k=1 λk = 1.
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Proof. This is a consequence of the discrete Jensen’s inequality when applied to the convex functions

f −mz2/2 and Mz2/2− f .

Corollary 8. (The gap in the AM-GM inequality) If 0 < m ≤ z1, . . . , zn ≤ M , λ1, . . . , λn ∈ [0, 1]

and
∑n

k=1 λk = 1, then

m

2n2

∑
1≤j<k≤n

(log zj − log zk)
2 ≤ 1

n

n∑
k=1

zk −
( n∏
k=1

zk

)1/n

≤ M

2n2

∑
1≤j<k≤n

(log zj − log zk)
2.

Proposition 3.1.14 exhibits the role of the variance in estimating the precision in Jensen’s inequality.

If (Ω,Σ, µ) is a probability space, the variance of a function g ∈ L2(µ) is defined by the formula

var(g) = E((g − E(g))2) = E(g2)− (E(g))2.

The variance is an indicator of how much the values of g are spread out. A variance of zero indicates

that all the values of g are identical, except possibly for a subset of Ω of probability zero.

The square root of the variance is called the standard deviation.

Since a probability measure is a finite measure, the space L2(µ) is included in L1(µ). Thus expectation

and variance applies to every function that belongs to L2(µ).

Let us consider the probability space Ω = {1, . . . , n}, Σ = P(Ω) and µ =
∑n

k=1 λkδk. The variance

of the function g : {1, . . . , n} → R defined by g(k) = zk for k = 1, . . . , n, is

var(g) = E((g − E(g))2)

= E(g2)− (E(g))2

=

n∑
n=1

λnz
2
n −

( n∑
n=1

λnzn

)2

=
1

2

∑
1≤i,j≤n

λiλj(zi − zj)2 =
∑

1≤i<j≤n
λiλj(zi − zj)2,

and thus the result of Proposition 3.1.14 can be reformulated as

m

2
var(g) ≤ E(f(g))− f(E(g)) ≤ M

2
var(g).

Notice that this double estimate works in general. In probability theory and statistics an important

role is played by the so called continuous random variables. A random variable X attached to a

probability measure space (Ω,Σ, P ) is called continuous if its cumulative distribution is of the form

FX(z) = P ({ω : X(ω) < z}) =

∫ z

−∞
w(u)du,



CHAPTER 3. JENSEN STEFFENSEN’S INEQUALITIES ON SPACESWITH CURVEDGEOMETRY95

for a suitable Lebesque integrable function w ∈ L1(R), called the density of FX . In this case, the

probability that X takes a value α is 0 and

P ({ω : a ≤ X(ω) ≤ b}) =

∫ b

a
w(u)du for all −∞ ≤ a ≤ b ≤ ∞.

Furthermore, the computation of the expectation and of the variance of X reduces to the computation

of certain Lebesque integrals:

E(X) =

∫ ∞
−∞

zw(z)dz and var(X) =

∫ ∞
−∞

(z − E(X))2w(z)dz.

A continuous random variable X is called normal if its distribution function is associated to a density

of the form

w(u, µ, σ) =
1

σ
√

2π
e−

(u−µ)2

2σ2 .

In this case, the values of the parameters µ ∈ R and σ > 0 are precisely the expectation and the

standard derivation of X.

Remark 22. (Upper bounds on the variance) As was noticed by D. S. Mitrinović, J. E. Pečarić and

A. M. Fink in [107], p. 296, if X is a random variable such that α ≤ X ≤ β for two suitable constants

α and β, then

var(X) ≤ (β − E(X))(E(X)− α).

This remark improves the upper bound previously indicated by T. Popoviciu [145]

var(X) ≤ (β − α)2

4
.

The bound found by Mitrinović, Pečarić and Fink follows easily from the general properties of expec-

tation:

0 ≤ E((β −X)(X − α)) = −αβ + (α+ β)E(X)− E(X2)

= (β − E(X))(E(X)− α)− var(X).

Remark 23. (Chebyshev’s probabilistic inequality) If X is a random variable associated to a probability

measure space (Ω,Σ, µ), then

µ({|X − E(X)| ≥ ε}) ≤ var(X)

ε2
,

for all ε > 0.

The covariance of two real random variables X,Y ∈ L2(P ) is defined by

cov(X,Y ) = E((X − E(X))(Y − E(Y )))

= E(XY )− E(X)E(Y ).

Two random variables X and Y whose covariance is zero are called uncorrelated. If X and Y are

independent, then their covariance is zero. This follows because under independence, E(XY ) =

E(X)E(Y ). However, uncorrelation does not imply in general independence.

The concept of covariance allows us to indicate a new upper estimate of the Jensen gap.
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Theorem 3.1.6. (The covariance form of Jensen’s inequality) Let (Ω,Σ, µ) be a probability space and

let g : Ω → R be a µ-integrable function. Suppose also that f is a convex function defined on an

interval I that includes the image of g and η : I → R is a function such that

(i) η(z) ∈ ∂f(z) for every z ∈ I;

(ii) η ◦ g and g · (η ◦ g) are µ-integrable functions.

Then

0 ≤ E(f ◦ g)− f(E(g)) ≤ cov(g, η ◦ g).

If f is concave, then the last two inequalities work in the reserved direction.

Proof. The first inequality is motivated by Theorem 3.1.5. The second inequality follows by integrating

the inequality

f(E(g)) ≥ f(g(z)) + (E(g)− g(z)) · η(g(z)) for all z ∈ Ω.

Corollary 9. (S. S. Dragomir and N. M. Ionescu [51]) If f is a differentiable convex function defined

on an open interval I, then

0 ≤
n∑
k=1

λkf(zk)− f
( n∑
k=1

λkzk

)

≤
n∑
k=1

λkzkf
′(zk)−

( n∑
k=1

λkzk

)( n∑
k=1

λkf
′(zk)

)
for all z1, . . . , zn ∈ I and all λ1, . . . , λn ∈ [0, 1], with

∑n
k=1 λk = 1.

The covariance defines a Hermitian product and it differs from a scalar product by the fact that

cov(X,X) = 0 implies only that X is constant almost everywhere. Since the Cauchy-Bunyakovsky-

Schwarz inequality still works for such products, we have the inequality

|cov(X,Y )| ≤ (var(X))1/2(var(Y ))1/2,

knows as the covariance form of Cauchy-Bunyakovsky-Schwarz inequality. This inequality shows that

Pearson’s correlation coefficient of X and Y , that is,

ρX,Y =
cov(X,Y )

(var(X))1/2(var(Y ))1/2

takes values in the interval [−1, 1]. A value of 1, respectively −1 for ρX,Y implies that the relationship

between X and Y is described by a linear equation, for which Y increases, respectively decreases as X

increases. A value of 0 implies that there is no linear correlation between the two random variables.

From the covariance form of Cauchy-Bunyakovsky-Schwartz inequality and Remark 23 we infer the

following classical result:

Theorem 3.1.7. (Grüss Inequality [65]) Suppose that the random variables X and Y are bounded,

precisely, α ≤ X ≤ β and δ ≤ Y ≤ γ. Then

|cov(X,Y )| ≤ 1

4
(β − α)(γ − δ).

and the constant 1
4 being sharp.
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3.1.7 Convex sets in real linear spaces

In this subsection we review some basic facts, necessary for a deep understanding of the concept of

convexity in real linear spaces. The natural domain for a convex function is a convex set.

A subset C of a linear space E is said to be convex if it contains the line segment

[x, y] = {(1− λ)x+ λy : λ ∈ [0, 1]},

connecting any of its points x and y. Convexity is a weak form of rotundity. Besides line segments,

some others simple examples of convex sets in the Euclidian space R are the lines, the planes, the

open disc, plus any part of their boundary and the N-dimensional rectangles (Cartesian products of

N nonempty intervals).

New examples from the old ones can be obtained by considering arbitrary intersections and/or the

following two algebraic operations with sets:

A+B = {x+ y : x ∈ A, y ∈ B},

λA = {λx : x ∈ A},

for A,B ⊂ E and λ ∈ R. The addition of sets is also known as the Minkowski addition. Addition of

sets is commutative and associative. One can prove easily that λA+µB is a convex set provided that

A and B are convex and λ, µ ≥ 0.

A subset A of E is said to be affine if it contains the whole line through any two of its points.

Algebraically, this means that

x, y ∈ A and λ ∈ R imply (1− λ)x+ λy ∈ A.

Cleary, any affine subset is also convex, but the converse is not true. It is important to notice that

any affine subset A is just the translate of a unique linear subspace L and all translations of a linear

space represent affine sets. In fact, for every a ∈ A, the translate

L = A− a

is a linear space and it is clear that A = L + a. For the uniqueness part, notice that if L and M are

linear subspaces of E and a, b ∈ E verify

L+ a = M + b,

then necessarily L = M and a− b ∈ L. This remark allows us to introduce the concept of dimension

for an affine set (as the dimension of the linear subspace of which it is a translate). Given a finite

family x1, . . . , xn of points in E, an affine combination of them is any point of the form

x =
n∑
k=1

λkxk,

where λ1, . . . , λn ∈ R and
∑n

k=1 λk = 1. If in addition λ1, . . . , λn ≥ 0, then x is called a convex

combination of x1, . . . , xn.
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Convex Nonconvex

Figure 3.5: Convex and nonconvex planar sets

Lemma 3.1.2. A subset C of E is convex (respectively affine) if and only if it contains every convex

(respectively affine) combination of points of C.

Proof. The sufficiency part is clear, while the necessity part can be proved by mathematical induction.

Given a subset A of E, the intersection conv(A) of all convex subsets of E containing A is convex

and thus it is the smallest set of this nature containing A. We call it the convex hull of A. By using

Lemma 3.1.2, one can verify easily that conv(A) consists of all convex combinations of elements of A.

The affine variant of this construction yields the affine hull of A, denoted aff(A). As a consequence

we can introduce the concept of dimension for convex sets to be the dimension of their affine hulls.

A nice example of convex hull is offered by the Gauss-Lucas theorem on the distribution of the critical

points of a polynomial: the roots (µk)
n−1
k=1 of the derivative P ′ of any complex polynomial P of degree

n ≥ 2 lie in the smallest convex polygon containing the roots (λi)
n
j=1 of the polynomial P . Indeed

assuming that w is a root of P ′ and P (w) 6= 0, we have

0 =
P ′(w)

P (w)
=

n∑
k=1

1

w − λk
=

n∑
k=1

w − λk
|w − λk|2

,

whence

w =

n∑
k=1

1

|w − λk|2
λk

/
n∑
k=1

1

|w − λk|2
.

If (Si)i∈I is a finite family of subsets of an N -dimensional linear space E, then the convex hull of their
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Minkovski addition equals the Minkovski addition of their convex hulls:

conv

(∑
i∈I

Si

)
=
∑
i∈I

conv(Si). (3.1.9)

Surprisingly, this simple remark has deep consequently to the geometry of convex sets. The clue is

provided by the following unifying lemma, used by R. M. Anderson in his course on Economic Theory,

taught in Spring 2010 at Berkeley.

Lemma 3.1.3. Consider a finite family (Si)i∈I of nonempty subsets of RN . Then every x ∈

conv

(∑
i∈I Si

)
admits a representation of the form

x =
∑
i∈I

( ∑
1≤j≤ni

λijxij

)

such that

(i)
∑

i∈I ≤ |I|+N ;

(ii) xij ∈ Si and λij > 0 for all i, j;

(iii)
∑ni

j=1 λij = 1 for all i ∈ I.

Proof. According to formula (3.1.9), every point x ∈ conv

(∑
i∈I Si

)
admits a representation of the

form x =
∑

i∈I xi with xi ∈ conv(Si) for all i. Therefore,

x =
∑
i∈I

( ∑
1≤j≤ni

λijxij

)
, (3.1.10)

for suitable xij ∈ Si and λij > 0 with
∑ni

j=1 = 1. Clearly, one can choose such a representation for

which n =
∑

i∈I ni is minimal. If n > |I|+N , then the vectors xij − xi1 for i ∈ I and j ∈ [2, ni] are

linearly dependent in RN . Then ∑
i∈I

∑
2≤j≤ni

cij(xij − xi1) = 0,

for some real coefficients, not all zero. Adding to equation (3.1.10) the last equation multiplied by a

real number λ we obtain

x =
∑
i∈I

∑
1≤j≤ni

λ̃ijxij , (3.1.11)

where

λ̃ij = λij + λcij if j ≥ 2,

λ̃i1 = λi1 − λ
∑

2≤k≤ni

cik if j = 1.

By a suitable choice of λ one can ensure that λ̃ij ≥ 0 for all indices i,j and that all least one

coefficient λ̃ij is zero. The representation (3.1.11) eliminates one of xij , contrary to the minimality of

n. Consequently, n ≤ |I|+N and the proof is complete.
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Theorem 3.1.8. (Carathéodoory’s theorem) Suppose that S is a subset of a linear space E and its

convex hull conv(S) has dimension m. Then each point x of conv(S) is the convex combination of at

most m+ 1 points of S.

Proof. Clearly, we may assume that E = Rm. Then apply Lemma 3.1.3 for I = {1} and S1 = S.

The sets of the form C = conv({x0, . . . , xn}) are usually called polytopes. If x1 − x0, . . . , xn − x0 are

linearly independent, then C is called an n-simplex with vertices x0, . . . , xn. In this case, dimC = n

and every point x of C has a unique representation x =
∑n

k=0 λkxk, as a convex combination of

vertices; the numbers λ0, . . . , λn are called the barycentric coordinates of x.

The standard n-simplex or unit n-simplex is the simplex ∆n whose vertices are the elements of the

canonical algebraic basis of Rn+1, that is,

∆n =

{
(λ0, . . . , λn) ∈ Rn+1 :

n∑
k=0

λk = 1 and λk ≥ 0 for all k

}
.

Given an arbitrary n-simplex C with vertices (x0, . . . , xn), the map

ω : ∆n → C, ω(λ0, . . . , λn) =
n∑
k=0

λkxk

is affine and bijective. Notice that any polytope conv({x0, . . . , xn}) is a union of simplices whose

vertices belong to {x0, . . . , xn}.

Remark 24. (Lagrange’s barycenter identity) Consider a finite system S of mass points (xk,mk) in

Rn+1, for k = 1, . . . , n; xk indicates position and mk the mass. In mechanics and physics, one defines

the barycenter or center of mass of the system by

bar(S) =

∑n
k=1mkxk∑n
k=1mk

.

The mass point (barS,
∑n

k=1mk) represents the resultant of the system S. Notice that barS ∈
conv({x0, . . . , xn}). A practical way to determine the barycenter was found by J. K. Lagrange [91],

who proved the following identity: For every family of points x, x1, . . . , xn in Rn and every family of

real weights m1, . . . ,mn with M =
∑n

k=1mk > 0, we have

n∑
k=1

mk||x− xk||2 = M

∣∣∣∣∣
∣∣∣∣∣x− 1

M

n∑
k=1

mkxk

∣∣∣∣∣
∣∣∣∣∣
2

+
1

M
·
∑

1≤i<j≤n
mimj ||xi − xj ||2.

For the proof, use the formula ||z||2 = 〈z, z〉. The previous formula yields the following variational

definition of barycenter: bar(S) is the unique point that minimizes the function x →
∑n

k=1mk||x −
xk||2, that is,

bar(S) = arg min
x∈Rn

n∑
k=1

mk||x− xk||2.
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3.2 On the barycenter for discrete Steffensen Popoviciu measures

in global NPC spaces

In this section we put in a new light the concept of barycenter for discrete Steffensen Popoviciu

measures supported in some points belonging to a space with curved geometry. More precisely, we

ensure the existence of the barycenter if we relax the restrictions imposed to the weights of the

measure. As applications, even in the case of nonpositive weights we deduce Jensen-Steffensen’s,

Hardy-Littlewood-Polya’s and Sherman’s type inequalities on global NPC spaces.

In the last decades numerous authors performed an intense research activity to extend majorization

theory beyond classical case of probability measures, i.e. Steffensen Popoviciu measures. The main

point of interest into this topic of research is to offer a large framework under which Jensen’s type

inequalities works. Jensen Steffensen’s inequality (see [116, Theorem 2.4.4]) reveals an important case

when Jensen’s inequality works beyond the framework of positive measures. In fact, this is our aim,

to relax the concept of barycenter in spaces with curved geometry, in order to provide more insight

into the relation between signed measures and Jensen’s type inequalities.

Based on the fact that most of weighted inequalities from the theory of convex functions are dealing

with positive weights we consider here the challenging case of nonpositive weights. In this context, we

recall the so called Jensen Steffensen inequality (we refer, for instance, to [115]).

Theorem 3.2.1. Let xn ≤ xn−1 ≤ · · · ≤ x1 in an interval [a, b] and let p1, . . . , pn be some real numbers

such that the partial sums Sk =
∑k

i=1 pi verify the relations

0 ≤ Sk ≤ Sn and Sn > 0.

Then, for every convex functions f : [a, b]→ R we have the inequality

f

(
1

Sn

n∑
k=1

pkxk

)
≤ 1

Sn

n∑
k=1

pkf(xk).

In fact, the above result is related to the general concept of Steffensen Popoviciu’s measure, as it is

presented in [114, 115, 116].

Definition 3.2.1. Let K be a compact convex subset of a real locally convex Hausdorff space E. A

Steffensen Popoviciu measure on K is any real Borel measure µ on K such that µ(K) > 0 and∫
K
f(x) dµ(x) ≥ 0,

for every positive, continuous and convex function f : K → R.

The characterization of discrete Steffensen Popoviciu’s measures is presented in [116, Corollary 9.14].

Proposition 3.2.1. Suppose that x1 ≤ · · · ≤ xn are real points and p1, . . . , pn are real weights. Then,

the discrete measure µ =
∑n

k=1 pkδxk is a Steffensen Popoviciu measure if

n∑
k=1

pk > 0 and 0 ≤
m∑
k=1

pk ≤
n∑
k=1

pk (m ∈ {1, . . . , n}).
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The concept of barycenter for Steffensen Popoviciu measures was fully discussed in [116, Lemma

9.2.3 and Theorem 9.2.4]. But, our aim is to give a new perspective to the barycenter concept on more

general spaces, namely global NPC spaces, via the majorization techniques.

It is worth noticing that the concept of weighted majorization in RN is related to an optimization

problem. Indeed, we have

xi = arg min
z∈RN

1

2

n∑
j=1

aij ‖z − yj‖2 , for i = 1, . . . ,m.

In what follows we shall deal with the relation of weighted majorization ≺, for pairs of discrete

probability measures. In the context of Euclidean space RN ,

l∑
i=1

λiδxi ≺
m∑
j=1

µjδyj (3.2.1)

means the existence of a m× l-dimensional matrix A = (aij)i,j such that the following four conditions

are fulfilled:

aij ≥ 0, for all i, j, (3.2.2)
m∑
j=1

aji = 1, i = 1, . . . , l, (3.2.3)

µj =
l∑

i=1

ajiλi, j = 1, . . . ,m, (3.2.4)

and

xi =

m∑
j=1

ajiyj , i = 1, . . . , l. (3.2.5)

See Borcea [27] and Marshal, Olkin and Arnold [104]. The matrices verifying the conditions (3.2.2)

and (3.2.3) are called stochastic on rows. When l = m and all weights λi and µj are equal to 1/m, the

condition (3.2.4) assures the stochasticity on columns, so in that case we deal with doubly stochastic

matrices.

Under the above settings, S. Sherman [160] use the concept of weighted majorization and proved

that, the following inequality
l∑

i=1

λif(xi) ≤
m∑
j=1

µjf(yj)

holds for every convex function f : I → R.

The aim of this section from the thesis is to extend the above majorization theory and the classical

inequalities for Steffensen Popoviciu measures, in spaces with curved geometry. More precisely, our

scope is to extend Theorem 3.2.1 in the framework of global NPC spaces and then to derive HLP’s,

Sherman’s and Jensen Steffensen’s type inequalities.

Subsection 3.1.1 is devoted to the concept of barycenter and Jensen Steffensen’s inequalities in the

framework of global NPC spaces; in subsection 3.1.2 we present some applications related to HLP’s,
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Sherman’s and Jensen Steffensen’s type inequalities for the weighted majorization of discrete mea-

sures (with nonpositive weights); Subsection 3.1.3 present some conclusions, extensions and further

applications related to relative convexity in global NPC spaces.

3.2.1 Jensen Steffensen’s type inequalities on global NPC spaces

Inspired from [94], we present an extension of barycenter for Steffensen Popoviciu discrete measures,

where the most important ingredient in NPC spaces is the barycenter of a discrete probability measures

λ =
∑n

i=1 λiδxi . Thus, in what follows we relax the concept of barycenter by considering nonpositive

weights for the discrete measures.

Definition 3.2.2. Let X := {x1, . . . , xn} be a family of points in a global NPC space M , all these

points belonging to the same geodesic [x1, xn] and, in addition the following assumptions are verified

xi ∈ [xi−1, xi+1] (i ∈ {2, 3, . . . , n− 1}) .

For any family of real weights Λ := {λ1, . . . , λn} which verify

0 ≤ Si ≤ Sn = 1 (i ∈ {1, 2, . . . , n}),

where

Sk = λ1 + · · ·+ λk (k ∈ {1, 2, . . . , n}) ,

we define the notion of weak barycenter of the family of points X with respect to the family of real

weights Λ as the unique point x̄ on the geodesic [x1, xn] satisfying

d(x̄, x1) = S̄2d(x2, x1) + S̄3d(x3, x2) + · · ·+ S̄nd(xn, xn−1), (3.2.6)

or, equivalenty,

d(xn, x̄) = S1d(x2, x1) + S2d(x3, x2) + · · ·+ Sn−1d(xn, xn−1), (3.2.7)

where

S̄k = λk + · · ·+ λn (k ∈ {1, 2, . . . , n}) .

Remark 25. Note that, the weak barycenter x̄ from (3.2.10) and (3.2.11) is well defined and we have

that

d(x̄, x1) + d(xn, x̄) = d(x2, x1) + d(x3, x2) + · · ·+ d(xn, xn−1) = d(xn, x1),

which confirm the fact that x̄ lies on the geodesic [x1, xn]. Moreover, using (3.2.10) or (3.2.11) in flat

spaces some computations goes back to the following classical formula

x̄ = λ1x1 + · · ·+ λnxn.

We are now in position to present a completely new proof of Jensen-Steffensen’s inequality in the

most relevant case, where we have considered the maximum possible number of nonpositive weights.

Theorem 3.2.2. (The discrete form of Jensen-Steffensen’s Inequality) Let X and Λ be given as in

Definition 3.2.2, but with nonpositive weights λ2, λ3, . . . , λn−1 ≤ 0.

Then, for every continuous convex function f : M → R we have the inequality

f(x̄) ≤
n∑
i=1

λif(xi).
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Proof. Taking into acount (3.2.10) and (3.2.11) a moment of reflections shows that

x̄ = bar((1− t0)δx1 + t0δxn),

where

t0 =
(λ2 + · · ·+ λn) d(x2, x1) + (λ3 + · · ·+ λn) d(x3, x2) + · · ·+ λnd(xn, xn−1)

d(xn, x1)
.

Hence, from convexity property along geodesic of the function f we get

f(x̄) ≤ λ1d(x2, x1) + (λ1 + λ2) d(x3, x2) + . . . (λ1 + · · ·+ λn−1) d(xn, xn−1)

d(xn, x1)
f (x1)

+
(λ2 + · · ·+ λn) d(x2, x1) + (λ3 + · · ·+ λn) d(x3, x2) + · · ·+ λnd(xn, xn−1)

d(xn, x1)
f (xn)

= λ1f (x1) + λnf (xn) + λ2
f (x1) d(xn, x2) + f (xn) d(x2, x1)

d(xn, x1)

+λ3
f (x1) d(xn, x3) + f (xn) d(x3, x1)

d(xn, x1)
. . .

+λn−1
f (x1) d(xn, xn−1) + f (xn) d(xn−1, x1)

d(xn, x1)
.

Using again the convexity of f and the fact that

bar

(
d(xn, xi)

d(xn, x1)
δx1 +

d(xi, x1)

d(xn, x1)
δxn

)
= xi (i = 2, . . . , n− 1),

we deduce that the following inequalities hold true

f(x2) ≤ f (x1) d(xn, x2) + f (xn) d(x2, x1)

d(xn, x1)
,

f(x3) ≤ f (x1) d(xn, x3) + f (xn) d(x3, x1)

d(xn, x1)
,

. . .

f(xn−1) ≤ f (x1) d(xn, xn−1) + f (xn) d(xn−1, x1)

d(xn, x1)
.

Finally, since λ2, λ3, . . . , λn−1 are nonpositive we get the desired conclusion.

3.2.2 Applications to HLP’s and Sherman’s type inequalities with nonpositive
weights

In order to obtain Sherman’s type inequalities with nonpositive weights we firstly introduce the relaxed

concept of majorization between two n-tuples of points in a global NPC space (M,d).
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Definition 3.2.3. Let x = (x1, . . . , xn) ∈Mn, y = (y1, . . . , yn) ∈Mn, n ≥ 2.

We define the concept of majorization x ≺ y by asking the existence of a matrix A = (αij) ∈Mlm(R)

such that

� αji ≤ 0 (i 6= 1 or i 6= l);

� yi ∈ [yi−1, yi+1] (i ∈ {2, 3, . . . , l − 1}) verify that all these points belong to the same geodesic

[y1, ym];

� xi is the weak barycenter of the family of points X := {y1, . . . , ym} with respect to the family of

real weights Λj as the unique point xi on the geodesic [y1, ym] satisfying

d(xi, y1) = S̄j2d(y2, y1) + S̄j3d(y3, y2) + · · ·+ S̄jnd(yn, yn−1), (3.2.8)

or, equivalenty,

d(yn, xi) = Sj1d(y2, y1) + Sj2d(y3, y2) + · · ·+ Sjn−1d(yn, yn−1), (3.2.9)

where

Λj := {α1j , . . . , αnj} (j ∈ {1, . . . ,m}),

S̄jk = αkj + · · ·+ αnj (k ∈ {1, 2, . . . , l}) ,

Sjk = α1j + · · ·+ αkj (k ∈ {1, 2, . . . , l}) ,

0 ≤ Sjk ≤ S
j
n = 1 (k ∈ {1, 2, . . . , l}).

We can present now the extension of HLP’s inequality in a global NPC space (M,d), when the weights

are allowed to be nonpositive.

Theorem 3.2.3. In the hypotheses from Definition 3.2.3 let us suppose that conditions (3.2.8) are

satisfied. Then, the following inequality

n∑
i=1

f(xi) ≤
n∑
i=1

f(yi)

holds for every convex function f : M → R.

Proof. Since the hypotheses of Theorem 3.2.2 are satisfied for each x̄ = xi, we get

f (xi) ≤
m∑
j=1

αijf(yj) (i = 1, . . . , l).

Taking into account (3.2.8) − (3.2.9) and applying Theorem 3.2.2 for each yi, i = 1, . . . ,m, where

yi =
∑l

j=1 pjxj , pj = αij , we get

m∑
i=1

aif (xi) =

m∑
i=1

aif

 m∑
j=1

yjαji


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≤
l∑

i=1

ai

 m∑
j=1

αjif (yj)

 =

m∑
j=1

f (yj)

l∑
i=1

aiαji.

Consequently, since bj =
∑l

i=1 aiαji we have

l∑
i=1

aif (xi) ≤
m∑
j=1

bjf (yj) .

We are in position to introduce the relaxed weighted concept of majorization between two n-tuples

of points in a global NPC space M .

Definition 3.2.4. Let x = (x1, . . . , xl) ∈ M l, y = (y1, . . . , ym) ∈ Mm, m, l ≥ 2. We consider some

real weights a = (a1, . . . , al) ∈ Rl (which can be nonpositive) and b = (b1, . . . , bm) ∈ [0,∞)m.

We define the concept of weighted majorization (x,a) ≺ (y,b) by asking the existence of a matrix

A = (αij) ∈Mlm(R) such that

� αji ≤ 0 (i 6= 1 or i 6= l);

� yi ∈ [yi−1, yi+1] (i ∈ {2, 3, . . . , l − 1}) verify that all these points belong to the same geodesic

[y1, ym];

� xi is the weak barycenter of the family of points X := {y1, . . . , ym} with respect to the family of

real weights Λj as the unique point xi on the geodesic [y1, ym] satisfying

d(xi, y1) = S̄j2d(y2, y1) + S̄j3d(y3, y2) + · · ·+ S̄jnd(yn, yn−1), (3.2.10)

or, equivalenty,

d(yn, xi) = Sj1d(y2, y1) + Sj2d(y3, y2) + · · ·+ Sjn−1d(yn, yn−1), (3.2.11)

where

Λj := {α1j , . . . , αnj} (j ∈ {1, . . . ,m}),

S̄jk = αkj + · · ·+ αnj (k ∈ {1, 2, . . . , l}) ,

Sjk = α1j + · · ·+ αkj (k ∈ {1, 2, . . . , l}) ,

0 ≤ Sjk ≤ S
j
n = 1 (k ∈ {1, 2, . . . , l}),

�

bj =

l∑
i=1

aiαji, (j = 1, . . . ,m), (3.2.12)

We can now present the extension of Sherman’s inequality in a global NPC space (M,d), when the

weights are allowed to be nonpositive.
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Theorem 3.2.4. In the hypotheses from Definition 3.2.4 let us suppose that conditions (3.2.10) are

satisfied. Then, the following inequality

m∑
i=1

aif(xi) ≤
l∑

j=1

bjf(yj)

holds for every convex function f : M → R.

Proof. Since the hypotheses of Theorem 3.2.2 are satisfied for each x̄ = xi, we get

f (xi) ≤
m∑
j=1

αijf(yj) (i = 1, . . . , l).

Taking into account (3.2.10)− (3.2.11) and applying Theorem 3.2.2 for each yi, i = 1, . . . ,m, where

yi =
∑l

j=1 pjxj , pj = αij , we get

m∑
i=1

aif (xi) =
m∑
i=1

aif

 m∑
j=1

yjαji


≤

l∑
i=1

ai

 m∑
j=1

αjif (yj)

 =
m∑
j=1

f (yj)
l∑

i=1

aiαji.

Consequently, since bj =
∑l

i=1 aiαji we have

l∑
i=1

aif (xi) ≤
m∑
j=1

bjf (yj) .

3.2.3 Conclusions and further open problems

Note that, in this section we extend the notion of barycenter for discrete Steffensen Popoviciu measures.

In essence, we allow the case of nonpositive weights, but with additional conditions imposed to the

points in which the measure is supported.

Hence, in this section of the thesis we assume that all the points in which is supported the discrete

measure should be on the same geodesic. But, we can give some general conditions, in which the same

results hold, but without imposing the same geodesic support.

More precisely, if the points x1, . . . , xn ∈M satisfy

bar

(
d(xn, xi)

d(xn, x1)
δx1 +

d(xi, x1)

d(xn, x1)
δxn

)
= xi (i = 2, . . . , n− 1),

then, all the inequalities from Theorems 3.2.2 and 3.2.3 still hold true.
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Hence, one future aim will consists of looking for a characterization of the points verifying the

above conditions. On the other hand, in [118, 124] the availability of Jensen’s inequality in a certain

nonconvex context is discussed. We outline the usefulness of the concept of point of convexity. We

briefly present here the main ideas which will be used to treat the case of nonpositive weights in this

context.

Definition 3.2.5. Let f : M → R be a continuous function. A point a ∈ M is a point of convexity

of the function f if

f(a) ≤
n∑
i=1

λif(xi), (3.2.13)

for every family of points x1, . . . , xn in M and every family of positive weights λ1, . . . , λn with
∑n

i=1 λi =

1 and bar (
∑n

i=1 λiδxi) = a.

The point a is a point of concavity if it is a point of convexity for −f (equivalently, if the above

inequality works in the reversed way).

In [118] we discuss the availability of Jensen’s inequality in a nonconvex context, in which we em-

phasize the usefulness of the concept of point of convexity. Thus, even in the case of spaces with a

curved geometry we have successfully introduced the point of convexity. See [124].

Hence, another future aim is to define a relaxed notion of ”point of relative convexity”, based on

the barycenter discussed in this subsection. Moreover, our aim is to recover that all the convex type

inequalities hold true if there exists such a point of relative convexity, all of this being open problems

in global NPC spaces.



Chapter 4

Final remarks and open problems

In this chapter we present some final remarks and further open problems related to the results obtained

in the present doctoral thesis. These problems are dealing with the possibility to continue to develop

new results within the topic of this thesis. More precisely, we discuss about norm properties of the

complete homogeneous symmetric polynomials, some error estimates with respect to euclidean norms

and other symmetric inequalities related with discrete Korn’s type inequalities. These norms, their

unusual construction, and their potential applications suggest some open problems. Moreover, the

topic of weak majorization in a global NPC spaces and its applications is also discussed.

4.1 Norms on complex matrices included by complete homogeneous

symmetric polynomials

Note that this section is inspired from [4]. In this section we discuss about a family of norms on the

space of n × n complex matrices which are initially defined in terms of certain symmetric functions

of eigenvalues of complex Hermitian matrices. The fact that we deal with eigenvalues, as opposed to

their absolute values, is notable. It prevents standard machinery, such as the theory of symmetric

gauge functions, from applying and the techniques used to establish that we indeed have norms are

more complicated than one might expect. For example, combinatorics, probability theory, and Lewis’

framework for group invariance in convex matrix analysis each play key roles.

These norms on the Hermitian matrices are of independent interest, because they can be computed

recursively or directly read from the characteristic polynomial. They can be extended in a natural

and nontrivial manner to all complex matrices. Such extensions of original norms involve partition

combinatorics and trace polynomials in noncommuting variables.

A Schur convexity argument permits our norms to be bounded below in terms of the mean eigenvalue

of a matrix. Denote by Hn(C) the set of n× n complex Hermitian matrices, Mn(C) the set of n× n
complex matrices and the eigenvalues of A ∈ Hn(C) by

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A)

and define

λ(A) = (λ1(A), λ2(A), . . . , λn(A)) ∈ Rn.

109
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We may use λ and λ1, λ2, . . . , λn if the matrix A is clear from context. Denote by diag(x1, x2, . . . , xn) ∈
Mn(C) the n×n diagonal matrix with diagonal entries x1, x2, . . . , xn, in that order. If x = (x1, x2, . . . , xn)

is understood from context, we may write diag(x) for brevity. For the convenience of the reader we

recall the complete homogeneous symmetric polynomials of degree d in the n variables x1, x2, . . . , xn
given by

hd(x1, x2, . . . , xn) =
∑

1≤i1≤···≤id≤n
xi1xi2 . . . xid , (4.1.1)

the sum of all degree d monomials in x1, x2, . . . , xn. For example,

h0(x1, x2) = 1,

h1(x1, x2) = x1 + x2,

h2(x1, x2) = x2
1 + x1x2 + x2

2,

h3(x1, x2) = x3
1 + x2

1x2 + x1x
2
2 + x3

2.

When the degree d is even and x ∈ Rn, Hunter proved that hd(x) ≥ 0, with equality if and only if

x = 0 [74]. This is not obvious because some of the summands that comprise hd(x) for d even may be

negative.

Definition 4.1.1. A partition of d ∈ N is an r-tuple π = (π1, π2, . . . , πr) ∈ Nr such that π1 ≥ π2 ≥
· · · ≥ πr and π1 + π2 + · · · + πr = d, the number of terms r depends on the partition π. We say that

π ` d if π is a partition of d.

For any π ` d, we define

pπ(x1, x2, . . . , xn) = pπ1pπ2 . . . pπr ,

where pk(x1, x2, . . . , xn) = xk1 + xk2 + · · · + xkn are the power sum symmetric polynomials. In another

form, we can write

hd(x1, x2, . . . , xn) =
∑
π`d

pπ(x1, x2, . . . , xn)

zπ
, (4.1.2)

in which the sum runs over all partitions π = (π1, π2, . . . , πr) of d and

zπ =
∏
i≥1

imimi!,

where mi is the multiplicity of i in π. For example, if π = (4, 4, 2, 1, 1, 1) then zπ = (133!)(211!)(422!) =

384. The integer zπ is precisely the Hall inner product of pπ with itself, in symmetric function theory.

If A ∈ Hn(C) has eigenvalues λ = (λ1, λ2, . . . , λn), then

pπ(λ) = pπ1(λ)pπ2(λ) · · · pπr(λ) = (trAπ1)(trAπ2) · · · (trAπr). (4.1.3)

Thus, the previous relations connects eigenvalues, traces and partitions to symmetric polynomials.

The following theorem provides a family of novel norms on the space Hn(C) of n × n Hermitian

matrices. See [4].

Theorem 4.1.1. For even d ≥ 2, the following is a norm on Hn(C):

|||A|||d = (hd(λ1(A), λ2(A), . . . , λn(A)))1/d.
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For example, using equations (4.1.2) and (4.1.3) we obtain trace-polynomial representations

|||A|||22 =
1

2
(tr(A2) + (trA)2), (4.1.4)

|||A|||44 =
1

24
((trA)4 + 6(trA)2tr(A2) + 3(tr(A2))2 + 8(trA)tr(A3) + 6tr(A4)). (4.1.5)

The above theorem needs some useful remarks.

(1) The sums (4.1.1) and (4.1.2) that characterize hd(λ(A)) may contain negative summands.

(2) The sums that define these norms do not involve the absolute values of the eigenvalues of A.

(3) The relationship between the spectra of (Hermitian) A, B and A + B, conjectured by A. Horn

in 1962 [72], was only established in 1998-9 by Klyachko [84] and Knutson-Tao [85]. Therefore,

the triangle inequality is difficult to establish. Even if A and B are diagonal, the result is not

obvious, but also in the case of positive diagonal matrices this result has been rediscovered.

(4) In the general Hermitian case is not straight-forward: standard techniques like symmetric gauge

functions are not applicable, we need to involves Lewis’ framework for group invariance in convex

matrix analysis.

(5) Another genuine approach to norms on Rn is due to Ahmadi, de Klerk, and Hall [[5], Thm. 2.1].

Note that, using Theorem 4.1.1 together with [[5], Thm. 2.1] we get convexity property.

4.2 Complete homogeneous symmetric polynomials as expectations

In this section we present a change of the perspective, by connecting complete homogeneous symmetric

polynomials with expectations. Let us consider ζ = (ζ1, ζ2, . . . , ζn) be a vector of independent standard

exponential random variables and let x = (x1, x2, . . . , xn) ∈ Rn. Since E[ζki ] = k! for i = 1, 2, . . . , n we

have that

E[〈ζ, x〉d] = E[(ζ1x1 + ζ2x2 + · · ·+ ζnxn)d]

= E
[ ∑
k1+k2+...kn=d

d!

k1!k2! . . . kn!
ζk11 ζk22 . . . ζknn xk11 x

k2
2 . . . xknn

]
=

∑
k1+k2+...kn=d

d!

k1!k2! . . . kn!
E
[
ζk11 ζk22 . . . ζknn xk11 x

k2
2 . . . xknn

]
= d!

∑
k1+k2+...kn=d

E[ζk11 ]E[ζk22 ] . . .E[ζknn ]

k1!k2! . . . kn!
xk11 x

k2
2 . . . xknn

= d!
∑

k1+k2+...kn=d

xk11 x
k2
2 . . . xknn

= d!hd(x),

for integral d ≥ 1, where for the last estimates we have used the linearity of expectation and the

independence of the ζ1, ζ2, . . . , ζn.
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Sincer for any d an even natural number, we have

hd(x) =
1

d!
E[|〈ζ, x〉|d] ≥ 0, (4.2.1)

Minkowski’s inequality implies that(
E[|〈ζ, x+ y〉|d]

)1/d
≤
(
E[|〈ζ, x〉|d]

)1/d
+
(
E[|〈ζ, y〉|d]

)1/d
,

[hd(x+ y)]1/d ≤ [hd(x)]1/d + [hd(y)]1/d.

for x, y ∈ Rn.

We consider now the inner product 〈X,Y 〉 = tr(XY ) on Hn(C), which is the restriction of the

Frobenius inner product to Hn(C). The inequality

tr(XY ) ≤ trδ(X)δ(Y ) (X,Y ∈ Hn(C)) (4.2.2)

is due to von Neumann and, for diagonal matrices, is equivalent to a classical rearrangement result

〈x, y〉 ≤ 〈x̃, ỹ〉,

where x̃ ∈ Rn has the components of x = (x1, x2, . . . , xn) in decreasing order.

For even d, the nonnegativity of the polynomials has a probabilistic approach which appears in

[165], and in [[164], Lem. 12], which cites [20]. There are many other proofs of the nonnegativity

of the even-degree CHS polynomials. Of course, there is Hunter’s inductive proof [74]. Rovenţa and

Temereancă used divided differences [[153], Thm. 3.5]. Recently, Böttcher, Garcia, Omar and O’Neill

[29] employed a spline-based approach suggested by Olshansky after Garcia, Omar, O’Neill, and Yih

obtained it as a byproduct of investigations into numerical semigroups [[60], Cor. 17].

The CHS norm of a Hermitian matrix can be exactly computed from its characteristic polynomial.

The following theorem involves only formal series manipulations. See [4].

Theorem 4.2.1. Let pA(x) denote the characteristic polynomials of A ∈ Hn(C). For d ≥ 2 even,

|||A|||dd is the d-th coefficient in the Taylor expansion around the origin of

1

det(I − xA)
=

1

xnpA(1/x)
.

Example 5. Let A =

[
1 1

1 0

]
. Then pA(z) = x2 − x− 1 and

1

x2pA(1/x)
=

1

1− x− x2
=

∞∑
n=0

fn+1x
n,

in which fn is the n-th Fibonacci number; given by fn+2 = fn+1 +fn and f0 = 0 and f1 = 1. It follows

that |||A|||dd = fd for even d ≥ 2.
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Note that, for any A ∈ Hn(C), the sequence hd(λ1, λ2, . . . , λn) satisfies a constant-coefficient re-

currence of order n since its generating function is a rational function whose denominator has de-

gree n. Using this method we can solve such a recurrence and we can compute explicitly ||A||d, for

d = 2, 4, 6, . . . .

On the other hand, for any d ≥ 1, the Newton-Gerard identities [158] give

hd(x1, x2, . . . , xn) =
1

d

d∑
i=1

hd−i(x1, x2, . . . , xn)pi(x2, x2, . . . , xn).

Hence, for A ∈ Hn(C) and d ≥ 2 even, we have that

hd(λ(A)) =
1

d

d∑
i=1

hd−i(λ(A))tr(Ai),

and then we can recursively compute |||A|||dd = hd(λ(A)).

In the following we try to show that each CHS norm on Mn(C) is bounded below by an explicit

positive multiple of the trace seminorm. That is, the CHS norms of a matrix can be related to its

mean eigenvalue. See [4].

Theorem 4.2.2. For A ∈Mn(C) and d ≥ 2 even,

|||A|||d ≥
(
n+ d− 1

d

)1/d |trA|
n

,

with equality if and only if A is a multiple of the identity.

Proof. Let d ≥ 2 be even. The even-degree complete homogeneous symmetric polynomials are Schur

convex [165].

Let A ∈ Mn(C) and define B(t) = eitA + e−itA∗ for t ∈ R. Then λ(B(t)) majorizes µ(t) =

(µ(t), µ(t), . . . , µ(t)) ∈ Rn, where µ(t) = trB(t)/n.

We have that

|||B(t)|||dd = hd(λ(B(t))) ≥ hd(µ(t)) = µ(t)d
(
n+ d− 1

d

)
,

|||A|||d ≥
((n+d−1

d

)
2π
(
d
d/2

) ∫ 2π

0
µ(t)ddt

)1/d

. (4.2.3)

Taking into account that∫ 2π

0
µ(t)ddt =

∫ 2π

0

(
trB(t)

n

)d
dt =

1

nd

∫ 2π

0
(eittrA+ e−ittr(A∗))ddt

=
1

nd

d∑
k=0

(
d

k

)
(trA∗)d−k(trA)k

∫ 2π

0
ei(2k−d)tdt
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=
2π

nd

(
d

d/2

)
|trA|d,

which gives the conclusion. The Fourier expansion gives that

eitA+ e−itA∗ =

(∑
n∈Z

µ̂(n)eint

)
I,

thus A = µ̂(1)I. The converse also holds.

Note also that, for A ∈ Hn(C) and even d ≥ 2, we can deduce that(
1

2
d
2 (d2)!

)1/d

||A||op ≤ |||A|||d ≤
(
n+ d− 1

d

)1/d

||A||op.

4.3 Polynomial norms

Note that this section is inspired from [5]. In this section, we present some polynomial norms, which

means norms that are the dth root of a homogeneous polynomial with degree d. An interesting

connection between convexity and norm is given in the following theorem. See [5].

Theorem 4.3.1. Let f be a form of degree d in n variables. The following statements are equivalent:

(1) The function f
1
d is a norm on Rn.

(2) The function f is convex and positive definite.

(3) The function f is strictly convex.

Proof. (1) =⇒ (2) Since f1/d is a norm, then f1/d is positive definite, and so is f . Notice that any

norm is convex and the dth power of a nonnegative convex function remains convex.

(2) =⇒ (3) Suppose that f is convex, positive definite, but not strictly convex and we can say that

there exists x̄, ȳ ∈ Rn with x̄ 6= ȳ, and γ ∈ (0, 1) such that

f(γx̄+ (1− γ)ȳ) = γf(x̄) + (1− γ)f(ȳ).

Let g(α) := f(x̄+α(ȳ− x̄)). Note that g is a restriction of f to a line and, consequently, g is a convex,

positive definite, univariate polynomial in α. We now define

h(α) := g(α)− (g(1)− g(0))α− g(0). (4.3.1)

Similarly to g, h is a convex univariate polynomial as it is the sum of two convex univariate polynomials.

We also know that h(α) ≥ 0, ∀α ∈ (0, 1). Indeed, by convexity of g, we have that

g(αx+ (1− α)y) ≥ αg(x) + (1− α)g(y), ∀x, y ∈ R and α ∈ (0, 1).

This inequality holds in particular for x = 1 and y = 0, which proves the claim. Observe now that

h(0) = h(1) = 0. By convexity of h and its nonnegativity over (0, 1), we have that h(α) = 0 on

(0, 1) which further implies that h = 0. Hence, from (4.3.1), g is an affine function. As g is positive
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definite, it cannot be that g has a nonzero slope, so g has to be a constant. But this contradicts that

limα→∞ g(α) =∞.

To see why this limit must be infinite, we show that lim||x||→∞ f(x) =∞. As

lim
α→∞

||x̄+ α(ȳ − x̄)|| =∞ and g(α) = f(x̄+ α(ȳ − x̄)),

implies that limα→∞ g(α) =∞. To show that lim||x||→∞ f(x) =∞, let

x∗ = arg min
||x||=1

f(x).

By positive definiteness of f, f(x∗) > 0. Let M be any positive scalar and define R := (M/f(x∗))1/d.

Then for any x such that ||x|| = R, we have

f(x) ≥ min
||x||=R

f(x) ≥ Rdf(x∗) = M,

where the second inequality holds by homogeneous of f . Thus lim||x||→∞ f(x) =∞.

(3) =⇒ (1) Homogeneity of f1/d is immediate. Positivity follows from the first-order characterization

of strict convexity:

f(y) > f(x) +5f(x)T (y − x), ∀y 6= x.

Indeed, for x = 0, the inequality becomes f(x) > 0, ∀y 6= 0, as f(0) = 0 and 5f(0) = 0. Hence, f is

positive definite, and so is f1/d. It remains to prove the triangle inequality. Let g := f1/d. Denote by

Sf and Sg the 1-sublevel sets of f and g respectively. It is clear that

Sg = {x|f1/d(x) ≤ 1} = {x|f(x) ≤ 1} = Sf ,

and as f is strictly convex (and hence quasi-convex), Sf is convex and so is Sg. Let x, y ∈ Rn. We

have that x
g(x) ∈ Sg and y

g(y) ∈ Sg. From convexity of Sg,

g

(
g(x)

g(x) + g(y)
· x

g(x)
+

g(y)

g(x) + g(y)
· y

g(y)

)
≤ 1.

Homogeneity of g then gives us
1

g(x) + g(y)
g(x+ y) ≤ 1,

which shows that triangle inequality holds.

Taking into account that not all norms are polynomial norms we are asking if we can generally

approximate the norms by polynomial norms.

In the following, we show that, though not every norm is a polynomial norm, but any norm can be

approximated to arbitrary precision by a polynomial norm. A related result is given by Barvinok in

[18]. In that section, he shows that any norm can be approximated by the d-th root of a nonnegative

degree-d form, and quantifies the quality of the approximation as a function of n and d. The form he

obtains however is not shown to be convex. In fact, in a later work [[19], Section 2.4], Barvinok points

out that it would be an interesting question to know whether any norm can be approximated by the

dth root of a convex form with the same quality of approximation as for d-th roots of nonnegative

forms.
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The result below is a step in that direction, although the quality of approximation is weaker than

that by Barvinok [18]. We note that the form in Barvinok’s construction is a sum of squares of other

forms. Such forms are not necessarily convex. By contrast, the form that we construct is a sum of

powers of linear forms and hence always convex.

Theorem 4.3.2. Let || · || be any norm on Rn. Then, for any even integer d ≥ 2:

(i) There exists an n-variable convex positive definite form fd of degree d such that

d

n+ d

(
n

n+ d

)n/d
||x|| ≤ f1/d

d (x) ≤ ||x||, (x ∈ Rn). (4.3.2)

In particular, for any sequence {fd} (d = 2, 4, 6, ...) of such polynomials one has

lim
d→∞

f
1/d
d (x)

||x||
= 1 ∀x ∈ Rn.

(ii) One may assume without loss of generality that fd in (i) is a nonnegative sum of dth powers of

linear forms.

Moreover, we also present recent concavity and convexity results for symmetric polynomials and their

ratios. Note that this part of this section is inspired from [164].

More precisely, our aim is to present the proof of the following convex type inequalities:

[ek((x+ y)p)]1/pk ≥ [ek(x
p)]1/pk + [ek(y

p)]1/pk (4.3.3)

[hk((x+ y)1/p)]p/k ≥ [hk(x
1/p)]p/k + [hk(y

1/p)]p/k (4.3.4)[
ek((x+ y)p)

ek−l((x+ y)p)

] 1
lp

≤
[
ek(x

p)

ek−l(xp)

] 1
lp

+

[
ek(y

p)

ek−l(yp)

] 1
lp

(4.3.5)[
hk((x+ y)1/p)

h1((x+ y)1/p)

] p
k−1

≤
[
hk(x

1/p)

h1(x1/p)

] p
k−1

+

[
hk(y

1/p)

h1(y1/p)

] p
k−1

, (4.3.6)

for x, y ∈ Rn+, p ∈ (0, 1) and 1 ≤ l ≤ k ≤ n. In these inequalities ek denotes the k-th elementary

symmetric polynomial

ek(x) =
∑

S⊆[n],[S]=k

∏
i∈S

xi

and xp we mean the vector (xp1, . . . , x
p
n).

We firstly present an important concavity result for ek, the Marcus-Lopes inequality [102]:

ek(x+ y)

ek−1(x+ y)
≥ ek(x)

ek−1(x)
+

ek(y)

ek−1(y)
, 1 ≤ k ≤ n, x, y ∈ Rn+. (4.3.7)

This inequality is used by Marcus and Lopes to prove the concavity of ek(x)1/k. Now, we give the

following concavity inequality:[
ek((x+ y)p)

ek−1((x+ y)p)

] 1
p

≥
[
ek(x

p)

ek−1(xp)

] 1
p

+

[
ek(y

p)

ek−1(yp)

] 1
p

. (4.3.8)

We introduce the parallel sum operation which is an important element of the proof:

x : y := (x−1 + y−1)−1, x, y > 0.
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Lemma 4.3.1. The parallel sum is jointly concave on R2
+. Moreover, for every p ≥ −1, the p-parallel

sum x :p y := [xp : yp]1/p is jointly concave. Also, both : and :p are monotonic in both arguments.

Proof. The Hessian equals

(p+ 1)

(
−xp−1yp+1(xp + yp)

−2− 1
p xpyp(xp + yp)

−2− 1
p

xpyp(xp + yp)
−2− 1

p −xp+1yp−1(xp + yp)
−2− 1

p

)
,

which is clearly negative definite for p ≥ −1. Monotonicity is clear from first derivatives.

Observe that x : y = y : x and (x : y) : z = x : (y : z), thus we extend the above notation and simply

write x1 : x2 : · · · : xn ≡ x1 : [x2 : [· · · : (xn−1 : xn)]]. However, the operation :p is not associative if

generalized the same way. Thus, a more preferable multivariate generalization is the following:

(x1, . . . , xn)→ [xp1 : xp2 : · · · : xpn]1/p.

Lemma 4.3.2. Let f1 : Rm1 → R++ and f2 : Rm2 → R++ be continuous concave functions. Then,

f1(x) :p f2(x) is jointly concave on Rm1 × Rm2.

Proof. It is suffices to establish midpoint concavity. Since f1 and f2 are concave, we have

f1

(
x1 + x2

2

)
≥ 1

2
f1(x1) +

1

2
f1(x2), and f2

(
y1 + y2

2

)
≥ 1

2
f2(y1) +

1

2
f2(y2).

The function :p is monotonically increasing in each of its arguments and is jointly concave, therefore

f1

(
x1 + x2

2

)
:p f2

(
y1 + y2

2

)
≥
(
f1(x1) + f1(x2)

2

)
:p

(
f2(y1) + f2(y2)

2

)
≥ 1

2
[f1(x1) :p f2(y1)] +

1

2
[f1(x2) :p f2(y2)],

which establish the joint concavity of f1(x) :p f2(x).

Now we are able to present the main result from [164].

Theorem 4.3.3. Let 1 ≤ k ≤ n. Then, the function

φk,n(x) :=

[
ek(x

p)

ek−1(xp)

]1/p

is concave for x ∈ Rn+ and p ∈ (0, 1).

Proof. We use induction on k and for k = 1, we have

φ1,n(x) = (xp1 + xp2 + · · ·+ xpn)1/p.

which is clearly concave. We assume that φk−1,n is concave for some k > 1. The key step in our proof

is the following remarkable observation of Anderson et al [12]:

Let Ψk,n(x) :=

(
n
k−1

)
ek(x)(

n
k

)
ek−1(x)

, then Ψk,n =
n∑
j=1

1

n− k + 1
xj :

1

k − 1
Ψk−1,n(x[j]),
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where x[j] denotes the vector x with xj omitted. Using the previous representation we see that for

suitable positive scaling factors ak and bk, we can write

φk,n(x) =

( n∑
j=1

apkx
p
j : bpkφ

p
k−1,n(x[j])

)1/p

=

( n∑
j=1

[akxj :p bkφk−1,n(x[j])
p

)1/p

. (4.3.9)

From induction hypothesis we know that φk−1,n(·) is concave; thus, applying Lemma 4.3.2 we see that

gj(x) := (akxj) :p (bkψk−1,n(x[j]))

is jointly concave in xj and x[j] and thus in x. Consequently, we can further rewrite (4.3.9) as

φk,n(x) =

( n∑
j=1

gj(x)p
)1/p

,

which is clearly concave as it is the (vector) composition the coordinate-wise increasing concave func-

tion (
∑

j x
p
j )

1/p with the vector (g1(x), . . . , gn(x)), where each gj(x) is itself concave.

Following the idea of Marcus and Lopez [102], who proved concavity of ek(x)1/k, we can now prove

(4.3.3), that is, the concavity of [ek(x
p)]1/p, by leveraging the ratio-concavity proved in Theorem 4.3.3.

Theorem 4.3.4. The function x→ [ek(x
p)]1/pk is concave for p ∈ (0, 1) and x ∈ Rn+.

In the same vein, we easily obtain a proof to (4.3.5) which generalizes Theorem 4.3.3.

For any 1 ≤ l ≤ k ≤ n, then

φk,l,n(x) :=

[
ek(x

p)

ek−l(xp)

]1/lp

,

is concave for x ∈ Rn+ for p ∈ (0, 1). See [164].

Proposition 4.3.1. The multivariate p-parallel sum map

x→ [xp1 : xp2 : · · · : xpn]1/p

is concave on Rn+ for p > 0.

Proof. The proof is by induction on n. Assume thus that the claim holds for Rk+ for k = 1, 2, . . . , n−1.

Consider thus,

Sn(x1, . . . , xn) = [xp1 : xp2 : · · · : xpn]
1
p .

From the induction hypothesis, we have that

Sn−1

(
1

2
(x1 + y1), . . . ,

1

2
(xn−1 + yn−1)

)
≥ 1

2
Sn−1(x1, . . . , xn−1) +

1

2
Sn−1(y1, . . . , yn−1). (4.3.10)

Thus, using the monotonicity of the :p operation and (4.3.10) we get

Sn

(
1

2
(x1 + y1), . . . ,

1

2
(xn + yn)

)
=

{[
Sn−1

(
1

2
(x1 + y1), . . . ,

1

2
(xn−1 + yn−1)

)]p
:

(
1

2
xn +

1

2
yn

)p}1/p

≥
{[

1

2
Sn−1(x1, . . . , xn−1) +

1

2
Sn−1(y1, . . . , yn−1)

]p
:

(
1

2
xn +

1

2
yn

)p}1/p

.
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Now concavity of :p immediately yields[(
Sn−1(x1, . . . , xn−1) + Sn−1(y1, . . . , yn−1)

2

)p
:

(
xn + yn

2

)p]1/p

≥ 1

2

[{
Sn−1(x1, . . . , xn−1)

}p
: xpn

]1/p

+
1

2

[{
Sn−1(y1, . . . , yn−1)

}p
+ ypn

]1/p

,

establishing concavity of Sn. Thus, by induction the said map is concave.

In a similar way, we can deduce that the function x→ ek(x
p) is reciprocally concave for p ∈ (−1, 0)

and x ∈ Rn+. See [164]. Note also that that for any X a Hermitian positive definite matrix, the

function

X→ 1

ek(λ(X)p)
, p ∈ (−1, 0),

is concave, where λ(·) denotes the eigenvalue map.

Using the following representation for complete homogeneous symmetric polynomials

1

k!
E[(ξ1x1 + · · ·+ ξnxn)k] =

∑
1≤i1≤i2≤···≤ik≤n

k∏
j=1

xij = hk(x), (4.3.11)

we can deduce the proof of the following convexity result of McLeod [105]:

[hk(x+ y)]1/k ≤ [hk(x)]1/k + [hk(y)]1/k. (4.3.12)

More precisely, using the fact that for any p ≥ 1, k ≥ 1, x, y ∈ Rn+ we have[∑
i

(∑
j

xpij + ypij

)k]1/pk

≤
(∑

ij

xpkij

)1/pk

+

(∑
ij

ypkij

)1/pk

(4.3.13)

we get the following two inequalities

[hk(x+ y)p]1/kp ≤ [hk(x
p)]1/kp + [hk(y)p]1/kp,[

hk((x+ y)p)

h1((x+ y)p)

]1/p(k−1)

≤
[
hk(x

p)

h1(xp)

]1/p(k−1)

+

[
hk(y

p)

h1(yp)

]1/p(k−1)

.

Our previous estimates obtained in this doctoral thesis can be useful to continue this research subject.

4.4 A finite difference approach of Korn’s inequalities

In this section we introduce a completely new topic related to future perspectives of this doctoral

thesis. Note that this part is inspired from [61].

Korn’s inequalities represent a main tool in linearized elasticity theory, that proves useful not only

in connection with the basic theoretical issues such as existence and uniqueness, but also in a large

variety of applications.
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Korn himself considered only the case of vector fields vanishing on the boundary (see [88]-[90]). His

results were subsequently improved and extended by many people including Friedrichs [57], Gobert

[62], Duvaut and Lions [54], Ciarlet [41], [46], Kondratiev and Oleinik [86], Oleinik, Shamaev and

Yosifan [136], Horgan [70], Desvillettes and Villani [50], Fuchs [58], Neff, Pauly and Witsch [110], to

mention here just a few contributions in chronological order. There is by now a huge literature on the

subject: a search on the electronic database of Google lists about 19,400 references concerned with

Korn’s inequalities.

Our aim is to offer new very simple proofs of these inequalities via the finite difference method. We

follow the terminology and notation used in the classical book of Ciarlet [41].

Let Ω be a domain in RN , that is an open, bounded and simply connected subset with sufficiently

smooth boundary ∂Ω. We consider a smooth vector field f : Ω → RN of components fk having the

Jacobian matrix ∇f =
(
∂fi
∂xj

)
i,j
. The symmetric part of ∇f is the matrix ∇symf with entries

1

2

(
∂fj
∂xi

+
∂fi
∂xj

)
.

Denoting by |∇f | and |Dsymf | the corresponding Hilbert-Schmidt matrix norms, the original first

inequality of Korn states that, if f belongs to C1
c (Ω,RN ) (the space of continuously differentiable

fields with compact support), then ∫
Ω
|∇f |2dx ≤ 2

∫
Ω
|∇symf |2dx. (K1)

Friedrichs [57] noticed that this inequality follows from an elementary identity. In fact, when f is

C2
c (Ω,RN ), a twice applications of integration by parts yields

∫
Ω

∂fi
∂xj

∂fj
∂xi

dx =

∫
Ω

∂fi
∂xi

∂fj
∂xj

dx,

from which one derives the formula∫
Ω
|∇symf |2 dx =

1

4

N∑
i,j=1

∫
Ω

(
∂fj
∂xi

+
∂fi
∂xj

)2

dx

=
1

2

N∑
i,j=1

[∫
Ω

(
∂fj
∂xi

)2

dx+

∫
Ω

∂fi
∂xj

∂fj
∂xi

dx

]

=
1

2

∫
Ω

N∑
i,j=1

(
∂fj
∂xi

)2

dx+

∫
Ω

N∑
i,j=1

∂fi
∂xi

∂fj
∂xj

dx

=
1

2

∫
Ω
|∇f |2 dx+

1

2

∫
Ω

(div f)2 dx,

and Korn’s inequality (K1) is now obvious. Then a standard approximation procedure yields the

general statement: the inequality (K1) holds for all fields in the Sobolev space H1
0 (Ω;RN ).

In the next subsection we will present an alternative approach of Korn’s first inequality using finite

differences. The complexity of the proof is pretty much the same, and represent a bridge for a similar

approach of Korn’s second inequality (whose all known proofs are nontrivial).
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Theorem 4.4.1. (The second Korn inequality) Let Ω be a domain in RN with Lipschitz boundary.

There exist of a positive constant C = C(Ω) such that

‖f‖2H1 ≤ C
(
‖f‖2L2 + ‖∇symf‖2L2

)
for all f ∈ H1(Ω;RN ).

Having Lipschitz boundary means that for any point a ∈ ∂Ω one can introduce orthogonal coordinates

y = C(x− a), where C is an N ×N -dimensional constant matrix such that in coordinates y = (ŷ, yn),

with ŷ = (y1, ..., yn−1), the intersection of ∂Ω with the cylinder

CR,L = {(ŷ, yn) : |ŷ| < R, − LR < yn < LR} ,

is given by the equation yn = ϕ(ŷ), where ϕ(ŷ) statisfies the Lipschitz condition in {ŷ : |ŷ| < R} with

Lipschitz constant not larger than L and

Ω ∩ CR,L = {y : |ŷ| < R, − LR ≤ yn ≤ LR} .

The numbers R and L are assumed to be the same for any point a ∈ ∂Ω and depend only on Ω.

For convenience of the reader, we recall here some properties of functions defined in domains with

Lipschitz boundary.

Theorem 4.4.2. (See [136], Theorem 1.2, p. 4) Let Ω be a domain in RN with Lipschitz boundary.

Then:

a) The embedding of H1(Ω) in L2(Ω) is compact.

b) If Ω ⊂ Ω0 and Ω0 is a domain of RN , then each u ∈ H1(Ω) can be extended to Ω0 as a function

ũ ∈ H1(Ω0) such that

‖ũ‖H1(Ω0) ≤ C‖u‖H1(Ω),

where C is a constant depending only on Ω.

c) Each function u ∈ H1(Ω) possesses a trace on ∂Ω belonging to L2(∂Ω) and such that

‖u‖L2(∂Ω) ≤ C1‖u‖H1(Ω),

where C1 is a constant depending only on Ω.

4.4.1 A proof of Korn’s first inequality

For simplicity, we restrict here to the 2-dimensional case and consider smooth vector fields f : Ω→ R2

of components f1 = f1(x, y), f2 = f2(x, y) defined on an open square Ω = (0, a)× (0, a). Since Korn’s

first inequality is proved under the assumption that f has compact support, this particular shape of

Ω makes no loss of generality.

Let us consider the mesh of Ω associated to the equidistant division 0 = a0 < a1 < a2 < · · · < an = a

of [0, a], given by ai = ih, where h = a
n . Put also

xi,j = f1((ai, aj)), yi,j = f2((ai, aj)), ∀ i, j ∈ {0, . . . , n}.
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Then the partial derivatives can be approximated by finite differences according to the formulas

∂f1

∂x1
(ai, aj) ≈

xi+1,j − xi−1,j

2h
,

∂f1

∂x2
(ai, aj) ≈

xi,j+1 − xi,j−1

2h
∂f2

∂x1
(ai, aj) ≈

yi+1,j − yi−1,j

2h
,

∂f2

∂x2
(ai, aj) ≈

yi,j+1 − yi,j−1

2h
.

In order to make the discretisation more flexible to our purpose we embed Ω into Ωh = (−h, a+h)×
(−h, a + h) and extend f1, f2 with zero on Ωh \ Ω. It is worth noticing that for n sufficiently large

f1, f2 vanish on a rectangular corona {(x, y) ∈ Ω : d((x, y), ∂Ω) < h}. Use the fact that f1, f2 have

compact supports.

Accordingly, the mesh of Ω is enlarged to a mesh of Ωh by considering the division points ai = ih,

for i ∈ {−1, 0, . . . , n+ 1}. Thus xi,j = yi,j = 0, for i, j ∈ {−1, 0, n, n+ 1}.

Taking into account that ∫
Ω
f(x, y)dxdy = lim

h→0
h2

∑
0≤i,j≤n

f(xi, yj), (4.4.1)

the proof of first Korn’s inequality reduces to the proof of its discrete analogue:∑
0≤i,j≤n

(xi+1,j − xi−1,j)
2 +

∑
0≤1,j≤n

(xi,j+1 − xi,j−1)2

+
∑

0≤i,j≤n
(yi+1,j − yi−1,j)

2 +
∑

0≤1,j≤n
(yi,j+1 − yi,j−1)2

≤ 2

 ∑
0≤i,j≤n

(xi+1,j − xi−1,j)
2 +

∑
0≤1,j≤n

(yi,j+1 − yi,j−1)2

+
1

2

∑
0≤i,j≤n

(xi,j+1 − xi,j−1 + yi+1,j − yi−1,j)
2

 . (4.4.2)

Equivalently, we have to prove that∑
0≤i,j≤n

(xi+1,j − xi−1,j)
2 + (yi,j+1 − yi,j−1)2

+ 2(xi,j+1yi+1,j + xi,j−1yi−1,j − xi,j+1yi−1,j − xi,j−1yi+1,j) ≥ 0. (4.4.3)

Indeed, taking into account that f1, f2 vanish on Ωh \ Ω, we have∑
0≤i,j≤n

xi,j+1yi+1,j =
∑

0≤i,j≤n
xi−1,jyi,j−1,∑

0≤i,j≤n
xi,j−1yi−1,j =

∑
0≤i,j≤n

xi+1,jyi,j+1,∑
0≤i,j≤n

xi,j+1yi−1,j =
∑

0≤i,j≤n
xi+1,jyi,j−1,∑

0≤i,j≤n
xi,j−1yi+1,j =

∑
0≤i,j≤n

xi−1,jyi,j+1,
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which yields∑
0≤i,j≤n

(xi+1,j − xi−1,j)
2 + (yi,j+1 − yi,j−1)2

+ 2(xi,j+1yi+1,j + xi,j−1yi−1,j − xi,j+1yi−1,j − xi,j−1yi+1,j)

=
∑

0≤i,j≤n
(xi+1,j − xi−1,j + yi,j+1 − yi,j−1)2 ≥ 0.

Hence, the proof of first Korn’s inequality is complete.

4.4.2 The proof of second Korn’s inequality

As in the precedent subsection we restrict ourselves to the two dimensional case, by considering

Ω = (0, a)× (0, a). According to Theorem 4.4.2 this particular shape of Ω covers the general case.

Under these assumptions, the second Korn’s inequality asserts the existence of a positive constant

C = C(Ω) such that,

∫
Ω
f2

1 + f2
2 +

(
∂f1

∂x

)2

+

(
∂f1

∂y

)2

+

(
∂f2

∂x

)2

+

(
∂f2

∂y

)2

dxdy

≤ C
∫

Ω
f2

1 + f2
2 +

(
∂f1

∂x

)2

+

(
∂f2

∂y

)2

+
1

2

(
∂f1

∂y
+
∂f2

∂x

)2

dxdy, (4.4.4)

for all f = (f1, f2) ∈ H1(Ω,R2).

We consider the same kind of meshes for Ω and respectively Ωh, imposing the following conditions

at the boundary points

x−1,j = x0,j , xn+1,j = xn,j , yi,−1 = yi,0, yi,n+1 = yi,n i, j = 0, . . . , n.

The discrete form of the second Korn’s inequality is

4h2
∑

0≤i,j≤n
(x2
ij + y2

ij) +
∑

0≤i,j≤n
(xi+1,j − xi−1,j)

2 +
∑

0≤1,j≤n
(xi,j+1 − xi,j−1)2

+
∑

0≤i,j≤n
(yi+1,j − yi−1,j)

2 +
∑

0≤1,j≤n
(yi,j+1 − yi,j−1)2

≤ C

4h2
∑

0≤i,j≤n
(x2
ij + y2

ij) +
∑

0≤i,j≤n
(xi+1,j − xi−1,j)

2 +
∑

0≤1,j≤n
(yi,j+1 − yi,j−1)2

+
1

2

∑
0≤i,j≤n

(xi,j+1 − xi,j−1 + yi+1,j − yi−1,j)
2

 . (4.4.5)
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Note that we have the following estimates∑
0≤i,j≤n

xi,j+1yi+1,j =
∑

0≤i,j≤n
xi−1,jyi,j−1

−
n∑
j=0

x−1,jy0,j−1 −
n∑
i=0

xi−1,0yi,−1 +
n+1∑
j=1

xn,jyn+1,j−1 +
n+1∑
i=1

xi−1,n+1yi,n,

∑
0≤i,j≤n

xi,j−1yi−1,j =
∑

0≤i,j≤n
xi+1,jyi,j+1

−
n∑
i=0

xi+1,nyi,n+1 −
n∑
j=0

xn+1,jyn,j+1 +
n−1∑
i=−1

xi+1,−1yi,0

n−1∑
j=−1

x0,jy−1,j+1,

∑
0≤i,j≤n

xi,j+1yi−1,j =
∑

0≤i,j≤n
xi+1,jyi,j−1

−
n∑
i=0

xi+1,1yi,−1 −
n∑
j=0

xn+1,jyn,j−1 +
n+1∑
j=1

x0,jy−1,j−1 +
n−1∑
i=−1

xi+1,n+1yi,n,

∑
0≤i,j≤n

xi,j−1yi+1,j =
∑

0≤i,j≤n
xi−1,jyi,j+1

−
n∑
j=0

x−1,jy0,j+1 −
n∑
i=0

xi−1,nyi,n+1 +
n+1∑
i=1

xi−1,−1yi,0 +
n−1∑
j=−1

xn,jyn+1,j+1.

Hence we have that∑
0≤i,j≤n

(xi,j+1yi+1,j + xi,j−1yi−1,j − xi,j+1yi−1,j − xi,j−1yi+1,j)

=
∑

0≤i,j≤n
xi−1,jyi,j−1 + xi+1,jyi,j+1 − xi+1,jyi,j−1 − xi−1,jyi,j+1

+
n+1∑
j=1

(xn,j − xn,j−2)yn+1,j−1 +
n+1∑
i=1

xi−1,n+1(yi,n − yi−2,n)

−
n∑
i=0

(xi+1,n − xi−1,n)yi,n+1 −
n∑
j=0

xn+1,j(yn,j+1 − yn,j−1)

+

n∑
i=0

(xi+1,0 − xi−1,0)yi,−1 −
n+1∑
j=1

(x0,j − x0,j−2)y−1,j−1

+

n∑
j=0

x−1,j(y0,j+1 − y0,j−1)−
n+1∑
i=1

xi−1,−1(yi,0 − yi−2,0).
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Thus (4.4.5) is equivalent to

4h2(C − 1)
∑

0≤i,j≤n
(x2
ij + y2

ij) +
C

2

∑
0≤i,j≤n

(xi+1,j − xi−1,j + yi,j+1 − yi,j−1)2

+

(
C

2
− 1

) ∑
0≤i,j≤n

(
(xi+1,j − xi−1,j)

2 + (xi,j+1 − xi,j−1)2 + (yi+1,j − yi−1,j)
2 + (yi,j+1 − yi,j−1)2

)
+ C

n∑
j=0

(xn,j+1 − xn,j−1)yn+1,j + C

n∑
i=0

xi,n+1(yi+1,n − yi−1,n)

− C
n∑
i=0

(xi+1,n − xi−1,n)yi,n+1 − C
n∑
j=0

xn+1,j(yn,j+1 − yn,j−1)

+ C
n∑
i=0

(xi+1,0 − xi−1,0)yi,−1 − C
n∑
j=0

(x0,j+1 − x0,j−1)y−1,j

+ C
n∑
j=0

x−1,j(y0,j+1 − y0,j−1)− C
n∑
i=0

xi,−1(yi+1,0 − yi−1,0) ≥ 0.

By using a discrete type Green formula for the last 8 terms (provided by the discretization of a

curviligne integral on the boundary of the square) we have to prove that

4h2(C − 1)
∑

0≤i,j≤n
(x2
ij + y2

ij) +
C

2

∑
0≤i,j≤n

(xi+1,j − xi−1,j + yi,j+1 − yi,j−1)2

+

(
C

2
− 1

) ∑
0≤i,j≤n

(
(xi+1,j − xi−1,j)

2 + (xi,j+1 − xi,j−1)2 + (yi+1,j − yi−1,j)
2 + (yi,j+1 − yi,j−1)2

)
− C

∑
0≤i,j≤n

((xi+1,j − xi−1,j)(yi,j+1 − yi,j−1)− (xi,j+1 − xi,j−1)(yi+1,j − yi−1,j)) ≥ 0.

Since we have that

C
∑

0≤i,j≤n
((xi+1,j − xi−1,j)(yi,j+1 − yi,j−1)− (xi,j+1 − xi,j−1)(yi+1,j − yi−1,j))

≤ C

2

∑
0≤i,j≤n

(
(xi+1,j − xi−1,j)

2 + (xi,j+1 − xi,j−1)2 + (yi+1,j − yi−1,j)
2 + (yi,j+1 − yi,j−1)2

)
,

it is sufficiently to prove that

4h2(C − 1)
∑

0≤i,j≤n
(x2
ij + y2

ij) +
C

2

∑
0≤i,j≤n

(xi+1,j − xi−1,j + yi,j+1 − yi,j−1)2

−
∑

0≤i,j≤n

(
(xi+1,j − xi−1,j)

2 + (xi,j+1 − xi,j−1)2 + (yi+1,j − yi−1,j)
2 + (yi,j+1 − yi,j−1)2

)
≥ 0.

Notice that for any C ≥ 2 depending on norm of the function and of the norm of the gradient of

the function we can deduce that the previous inequality hold. This dependence will be a subject of a

future work.
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4.5 Weak majorization in global NPC spaces

In this section we introduce the concept of weak majorization in the framework of some spaces with a

curved geometry (such as the global NPC spaces). The key point is given by a perturbed barycenter

concept, defined by a minimization argument. Then, by using a generalized concept of majorization

in a global NPC space (for which we can prove Hardy-Littlewood-Pólya’s majorization theorem) we

can study the concept of weak majorization in this context. Note that this part is inspired from [120].

In the following we study a perturbed barycenter concept in a space with global nonpositive curvature,

by using a minimization procedure. This notion of perturbed barycenter is the main ingredient used

to introduce the concept of weak majorization in global NPC spaces.

Let α > 0, y ∈ M and let µ be a probability measure defined on a global NPC space (M,d), such

that µ ∈ P2(M).

We shall make use of the process of augmentation of a discrete probability measure µ =
∑n

i=1 µiδxi
by adding a new point y in its support. This consists in choosing arbitrarily a positive number α > 0

followed by a reallocation of the mass of µ to the point y, in other words, by replacing µ by the

probability measure

µy,α =

n∑
i=1

µi
1 + α

δxi +
α

1 + α
δy.

We define the barycenter of the augmented measure µz,α as the point given by the formula

bar(µy,α) = arg min
z∈M

1

2

∫
M

(
d2(z, x) + αd2(z, y)

)
dµ(x)

= arg min
z∈M

1

2
(
n∑
i=1

µi(d
2(z, xi) + αd2(z, y))

and Jensen’s inequality associated to it asserts that

f(bar(µz,α)) ≤ 1

1 + α

n∑
i=1

µif(xi) +
α

1 + α
f(y) (4.5.1)

for any lower semicontinuous convex function f : M → R.

In the particular case when M = RN and µ1 = · · · = µn = α = 1/n, we have

bar(µ) =
x1 + · · ·+ xn

n
and bar(µy,α) =

x1 + · · ·+ xn + y

n+ 1
,

so that the inequality (4.5.1) reads as

f

(
x1 + · · ·+ xn + y

n+ 1

)
≤ n

n+ 1
f

(
x1 + · · ·+ xn

n

)
+

1

n+ 1
f(y).

The extension of the concept of weak majorization to the context of global NPC spaces is based on

the process of augmentation described in the previous sentences.
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Definition 4.5.1. The relation of weak majorization,

m∑
i=1

λiδxi ≺NPCw
n∑
j=1

µjδyj , (4.5.2)

means the existence of a vector z ∈ M, of a string α1, ..., αn of nonnegative numbers and also of an

m× n-dimensional stochastic on rows matrix A = (aij)i,j that verify the following two conditions:

µj =

m∑
i=1

aijλi, j = 1, ..., n (4.5.3)

and

xi = arg min
x∈M

1

2

n∑
j=1

aij(d
2(x, yj) + αid

2(x, z)), i = 1, ...,m. (4.5.4)

When α1 = · · · = αn = 0, the definition of weak majorization reduces to that of majorization.

The existence and uniqueness of the solution for problem (4.5.4), when α = 0, is assured by the

fact that the objective functions are uniformly convex and positive. See [80, Section 3.1], or [163,

Proposition 1.7]. We prove now the existence and uniqueness of the perturbed barycenter for α > 0.

Proposition 4.5.1. Let α > 0, y ∈ M and let µ be a probability measure defined on a global NPC

space M , such that µ ∈ P2(M). Let us consider

Ty(z) =

∫
M
d2(z, x) + αd2(z, y)dµ(x) (z ∈M).

Then, Ty has a unique minimizer on M .

Proof. In [163, Proposition 2.3] has been proved that the function z → d2(z, x) is uniformly convex.

Consequently, denoting by zt the joining geodesic of the points z0, z1 we have that

Ty(zt) =

∫
M
d2(zt, x) + αd2(zt, y)dµ(x)

≤ (1− t)
∫
M
d2(z0, x) + αd2(z0, y)dµ(x) + t

∫
M
d2(z1, x) + αd2(z1, y)dµ(x)

−t(1− t)(1 + α)d2(z0, z1)

≤ (1− t)Ty(z0) + tTy(z1)− t(1− t)d2(z0, z1),

which precisely means that Ty is uniformly convex.

Moreover, the continuity of the distance function z → d2(z, x) implies the continuity of Ty, hence by

using in addition the uniform convexity, we deduce that Ty has a unique minimizer.

The agreement of the weak majorization concept in different settings makes the objective of the

following result.
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Theorem 4.5.1. If µ = 1
n

∑n
i=1 δxi and ν = 1

N

∑n
j=1 δyj are two discrete probability measures on R

such that x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn, then

µ ≺NPCw ν if and only if µ ≺HLPw ν.

Proof. Suppose that µ ≺NPCw ν. According to Definition 4.5.1, there exist a real number z, a string

α1, . . . , αn of nonnegative numbers and also an n×n-dimensional doubly stochastic matrix A = (aij)i,j
such that

xi = arg min
x∈R

1

2

n∑
j=1

aij((x− yj)2 + αi(x− z)2), for i = 1, . . . , n,

equivalently,

xi =

∑n
j=1 aijyj + αiz

1 + αi
for i = 1, . . . , n,

which implies

ϕ(xi) ≤
1

1 + αi

n∑
j=1

aijϕ(yj) +
αi

1 + αi
ϕ(z).

Now, by choosing

z = min
i

n∑
j=1

min{yj , 0},

the following relation holds

xi = arg min
x∈M

1

2

n∑
j=1

aij((x− yj)2 + αi(x− z)2), i = 1, . . . ,m, (4.5.5)

where (αi)i are some positive real numbers. Now, using the fact that y ≤ 0, a simple calculus gives

that

xi ≤
∑n

j=1 aijyj

1 + αi
≤

n∑
j=1

aijyj (i = 1, . . . , n).

If we denote by xi =
∑n

j=1 aijyj , since (aij)i,j is doubly stochastic it follows that (x1, . . . , xn) ≺
(y1, . . . , yn). Hence the following sequence of inequalities holds

x1 ≤ x1 ≤ y1,

x1 + x2 ≤ x1 + x2 ≤ y1 + y2,

...

x1 + · · ·+ xn ≤ x1 + · · ·+ xn = y1 + · · ·+ yn.

Suppose now that µ ≺HLPw ν. By replacing µ and ν respectively by

µ̄ =
1

n+ 1

n+1∑
i=1

δxi and ν̄ =
1

n+ 1

n+1∑
i=1

δyi

where xn+1 = min {x1, . . . , xn, y1, . . . , yn} = yn and yn+1 =
∑n+1

i=1 xi −
∑n

i=1 yi we have

µ̄ ≺HLP ν̄
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and this yields the existence of a doubly stochastic matrix A = (aij)i,j such that

xi =
n+1∑
j=1

aijyj for i = 1, . . . , n+ 1.

Therefore

xi = arg min
x∈R

1

2

n∑
j=1

aij((x− yj)2 + αin+1(x− yn+1)2), for i = 1, . . . , n

and
n∑
j=1

aij ≤ 1 for i = 1, . . . , n,

and the proof is finished.

The relevance of the study of such perturbed minimizers can be viewed in different ways. One of

them, consist in the fact that frequently we need to consider a minimizer for perturbed functionals,

and this minimizer is the solution of a partial differential equation. On the other hand, the added

norm term can be seen as the distance to a fixed point, which in optimization theory has the meaning

to add a fix point which will be taking into account in our minimization problem.

Based on the above definition, we are able to give a nice version of Hardy-Littlewood-Polya’s inequal-

ity and to extend classical results from majorization theory. For more details, see [126]. On the other

hand, the concept of weak majorization is a completely open an very interesting problem in such a

general settings. We are now in position to prove an important consequence, which gives a discrete

version of Jensen’s inequality in the context of global NPC spaces.

Theorem 4.5.2. (A discrete Jensen’s inequality) Let ϕ : M → R be a lower semicontinuous convex

function and µ ∈ P2(M), where µ is a discrete probability measure µ =
∑n

i=1 µiδxi , with
∑n

i=1 µi = 1.

The following inequality holds

ϕ(bar(µ;α)) ≤ 1

1 + α

n∑
i=1

µiϕ(xi) +
α

1 + α
ϕ(y). (4.5.6)

Proof. Firstly, note that

bar(µ;α) = arg min
z∈M

1

2

n∑
i=1

µi
(
d2(z, xi) + αd2(z, y)

)
= arg min

z∈M

1 + α

2

n∑
i=1

(
µi

1 + α
d2(z, xi) +

αµi
1 + α

d2(z, y)

)

= arg min
z∈M

1

2

2n∑
i=1

λid
2(z, yi),

where λi = µi
1+α , λi+n = αµi

1+α , yi = xi and yi+n = y, for each i = 1, . . . , n.

Hence, we have proved that

bar(µ;α) = bar(λ), where λ =

2n∑
i=1

µiδyi .
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By using classical Jensen’s inequality from [163, Theorem 6.2], we have that

ϕ (bar(µ;α)) = ϕ (bar(λ)) ≤
2n∑
i=1

λiϕ(yi)

=

n∑
i=1

µi
1 + α

ϕ(xi) +

n∑
i=1

αµi
1 + α

ϕ(y) =
1

1 + α

n∑
i=1

µiϕ(xi) +
α

1 + α
ϕ(y),

and the proof of (4.5.6) ends.

Another consequence consist of a a generalization of Sherman’s majorization results.

Theorem 4.5.3. (HLP-Sherman) Let ϕ : M → R be a convex function and let

m∑
i=1

λiδxi ≺α
n∑
j=1

µjδyj ,

as in (4.5.2). Then the following inequality holds

m∑
i=1

λi(1 + αi)ϕ(xi) ≤
n∑
j=1

µjϕ(yj) + ϕ(y)
m∑
i=1

λiαi. (4.5.7)

Proof. Taking into account (4.5.4) and (4.5.6) we have that

ϕ(xi) ≤
1

1 + αi

n∑
j=1

aijϕ(yj) +
αi

1 + αi
ϕ(y) (i = 1, . . . ,m.)

Hence, it follows that

m∑
i=1

λi(1 + αi)ϕ(xi) ≤
m∑
i=1

n∑
j=1

λiaijϕ(yj) +
m∑
i=1

λiαiϕ(y)

=

n∑
j=1

µjϕ(yj) + ϕ(y)

m∑
i=1

λiαi,

and the proof is finished.

Remark 26. Note that (4.5.7) gives in fact that

m∑
i=1

λiδxi ≺
n∑
j=1

µj
1 + α

δyj +
α

1 + α
δy.

We have now introduced a variational technique for the definition of weak majorization. At least

for our knowledge, this is the first time when the weak majorization is written in term of minimizers.

Moreover, the point y = 0 is essential in the theory of weak majorization on R, which remind us about

a nice characterization of weak majorization in terms of convex and nondecreasing functions. In fact,

the definition of a nondecreasing function is essentially based on the distance to the origin (the same

point which appears in the above assertion).



CHAPTER 4. FINAL REMARKS AND OPEN PROBLEMS 131

Thus, we are now in position to state an important consequence which prove that our definition is

natural and well posed. We present an extension of Tomic-Weyl result for weak majorization in global

NPC spaces.

Theorem 4.5.4. Let us consider that

1

n

1∑
i=1

δxi ≺∗
1

n

n∑
j=1

δyj . (4.5.8)

Let ϕ : M → R be a convex function which verifies

ϕ(xi) ≥ ϕ(y) (i = 1, . . . , n),

where y ∈M is the point appearing in the definition of (4.5.8). Then the following inequality holds

n∑
i=1

ϕ(xi) ≤
n∑
i=1

ϕ(yi). (4.5.9)

Proof. From (4.5.8) we infer the existence of an y ∈M, α ∈ Rn+ and a matrix (λij)i,j such that

xi = arg min
z∈M

1

2

n∑
j=1

λij
(
d2(z, yj) + αid

2(z, y)
)

i = 1, . . . ,m.

From (4.5.6) it follows that

ϕ(xi) ≤
1

1 + αi

n∑
j=1

λijϕ(yj) +
αi

1 + αi
ϕ(y),

n∑
i=1

(1 + αi)ϕ(xi) ≤
n∑
j=1

ϕ(yj) + ϕ(y)
n∑
i=1

αi,

n∑
i=1

ϕ(xi) +

n∑
i=1

αiϕ(xi) ≤
n∑
j=1

ϕ(yj) + ϕ(y)

n∑
i=1

αi,

hence, since ϕ(xi) ≥ ϕ(y) we obtain that the conclusion.

Note that, the hypothesis ϕ(xi) ≥ ϕ(y) is nothing else than the nondecreasing property of a function

in R+.

In this context, we can consider the perturbed minimizers, our α-majorization, into the spaces with

global nonpositive curvature. The existence and uniqueness of such perturbed minimizers in a global

NPC space, is a difficult task but using the above remarks we are able to be succesfully implemented

(see a detailed approach of the notion of barycenter Sturm [163, Proposition 1.7]).

The results from this section can be also extended in the framework of nonpositive weights, but this

will be the subject of a future work.
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Basel, 2005.

[18] A. Barvinok, Approximating a norm by a polynomial, Geometric Aspects of Functional Analysis,

Springer, 2003, pp. 20–26.

[19] A. Barvinok and E. Veomett, The computational complexity of convex bodies, Surveys on discrete

and computational geometry, Contemporary Mathematics 453 (2008), 117–137.

[20] A. I. Barvinok, Low rank approximations of symmetric polynomials and asymptotic counting of

contingency tables, https://arxiv.org/abs/math/0503170.

[21] J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New

York, 1989.

[22] M. Bencze, C.P. Niculescu and F. Popovici, Popoviciu’s inequality for functions of several vari-

ables, J. Math. Anal. Appl. 365 (1) (2010), 399–409.

[23] G. Bennett, Summability matrices and random walk, Houston J. Math 28 (2002), no. 4, 865–898.

[24] R. Bhatia, Positive definite matrices, Princeton University Press, 2007.

[25] R. Bhatia, Matrix analysis, Springer-Verlag, 1997.

[26] M. B̂ırsan, P. Neff, J. Lankeit, Sum of squared logarithms - an inequality relating positive definite

matrices and their matrix logarithm, J. Inequal. Appl. (2013), no. 168.

[27] J. Borcea, Equilibrium points of logarithmic potentials induced by positive charge distributions. I.

Generalized de Bruijn-Springer relations, Trans. Amer. Math. Soc. 359 (2007), 3209–3237.

[28] J. Borwein, A. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples (2

ed.), Springer. ISBN 978-0-387-29570-1, (2006).
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[36] E. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthiers-Villars, Paris, 1928; 2nd

éd., 1946.
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[61] I. D. Ghiba, C. P. Niculescu, and I. Rovenţa, A finite difference approach of Korn’s inequalities,

work in progress.
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[120] C. P. Niculescu, I. Rovenţa, Weak majorization in Cat[0] spaces, work in progress.
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[153] I. Rovenţa, L. E. Temereancă, A note on the positivity of the even degree complete homogeneous

symmetric polynomials, Mediterr. J. Math. 16 (2019), 1–16.
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