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Chapter 1

Introduction, preliminaries and main
results

The general aim of the present doctoral thesis is to strengthen the role of Convex Functions Theory
(pointed out by majorization theory), as an important link between Mathematics, Engineering and
Computer Science. We also emphasize the powerful interdisciplinary role of convexity, having as main
tools optimization ideas and methods combined in various ways.

The main topic we are interested in this thesis is given by the link between convex analysis and
majorization theory, described in terms of new concepts and refined majorization convex type inequal-
ities. More precisely, we present Jensen’s, Hardy-Littlewood-Polya’s and Sherman’s type inequalities
for new type of weakly or strongly convex functions, perturbed by homogeneous symmetric polynomi-
als of even degree. We manage to prove that the behaviour of homogeneous symmetric polynomials
is similar to the one of euclidean norms. Moreover, the main novelty here is given by the possibility
to extend all the above mentioned inequalities for nonpositive weights in R™, or even in spaces with
curved geometry. These extensions in more general spaces can be done via majorization arguments
and based on the extension of the barycenter concept for Steffensen-Popoviciu measures (where the
weights are allowed to be nonpositive).

We consider that the research topic of this doctoral thesis becomes over the years an important field
of research, due to the necessity to understand and optimize different processes/problems which use
convex analysis tools, in order to be applied in different areas of research [28, 54, 68, 116]. In other
words, our particular aim is to consolidate a theoretical foundation for studying optimization problems
from an applied point of view, such as modeling communication networks and design of communication
systems.

The concept of majorization appears in 1905, when Max Lorenz propose a graphical way to model
the social differences in a finite population. Later on, Dalton (1920) and Hardy-Littlewood-Polya
(1927, 1934), reveal some optimization properties, which led to the notion of Schur-convex function.
Applications of majorization in 4G communications networks, are related to data transmission rates
with huge dimensions, where the interferences between different links create a strangulations of data
transmission rates. An important amelioration was obtained in [11, 67], where the optimal power
distribution is studied as a nonlinear optimization problem, non-convex with constraints. The problem
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was solved by the identification of a Schur-convex structure in the objective function. It can be shown
that the optimal power allocation is binary, in a sense that, the data are sent with maximal power or
the data transmission is not allowed (which goes back to switching or bang-bang controls strategy).
These results obtained in the field of convex analysis are focused on majorization inequalities and can
be used to obtain new optimal operating principles for some communications devices as intelligent
traffic lights.

The second approach deals with weakly/strongly majorization/convexity concepts in the context of
metric spaces with global non-positive curvature (namely global NPC spaces). Besides Hilbert spaces
and manifolds, other important examples of global NPC spaces are the Bruhat-Tits buildings [17, 163]
(in particular, the trees). It is important to mention that, in [119, 121, 126], Ky-Fan’s inequality,
Schauder’s and Schaeffer’s fixed point theorems and Hardy-Littlewood-Polya’s majorization theorem
have been extended in the context of global NPC spaces [17, 28, 80]. A new type of weak majorization
was also discussed in [150].

The subject of majorization in global NPC spaces was successfully studied using some ideas inspired
from articles [26, 92, 98, 111]. Applying different kind of majorization concepts (see [150]), for instance,
to the trees, we could obtain a feasible model for the optimal distribution in high performances
communication networks.

Other significant idea in this area presented in this thesis, is given by the possibility to introduce a
new weaker concept of ”point of convexity with nonpositive weights” , inspired by the notion of point
of convexity introduced in [118]. Early references can be found in [47, 52, 59, 114, 127, 138, 139, 161].
Our aim is to use the notion of "point of convexity with nonpositive weights” in such a way to prove
different type of convex inequalities for weaker assumptions, even in the context of global NPC spaces.
Finally, note that some weaker or other generalized convexities were successfully used in the study of
existence and uniqueness of solutions of partial differential equations. As applications, we mention
that in order to establish a sufficient condition for the existence of finite time blow-up solutions for an
evolutionary problem, arising naturally in mechanics, biology and population dynamics, in [122, 123],
we have successfully used a class of generalized convex functions. See [21, 34, 35, 38, 59].

In the following sentences (of Chapter I) we briefly present the content of each chapter, where we
announce the main results of this thesis. Moreover, we are also focused to give some theoretical
background, in order to offer a general view and a good understanding of the whole thesis.

The first part of Chapter II is an introductory one and is mainly inspired from [68, 69, 104]. In this
part, we present some notions related to convexity, majorization theory and inequalities associated to
it. In fact, we recall the main properties of the relation of majorization, which was introduced by G.
H . Hardy, J. E. Littlewood and G. Pélya [69] in 1929, and was popularized by their well-known book
on inequalities [68]. For other details we also refer to the recent book by A. W. Marshall, I. Olkin and
B. Arnold [104].

The second part of Chapter II is based on the paper G. M. Lachescu, M. Malin and I. Roventa, New
Versions of Uniformly Convex Functions via Quadratic Complete Homogeneous Symmetric Polynomi-
als, Mediterranean Journal of Mathematics 20, 279 (2023).

In this part we present new versions of uniformly convex functions, namely hy strongly/weaker
convex functions. In other words, we introduce stronger and weaker versions of uniformly convexity
for which we recover well-known convex type inequalities such as: Jensen’s, Hardy-Littlewood-Polya’s
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and Popoviciu’s inequalities. Sherman’s and Ingham’s type inequalities are also discussed.

More precisely, the topic we address is related to the study of a new family of convex functions which
is based on the positivity property of complete homogeneous symmetric polynomials with even degree.
The positivity of symmetric polynomial functions was firstly studied in an old paper of Hunter [74].
Later on, in [165] a different way to establish the positivity of such polynomials was considered. In ad-
dition, two different ideas are presented in [153], based on a Schur-convexity argument or on a method
with divided differences. Note also that, the previous strategies was used to obtain fine estimates on
the norms on complex matrices induced by complete homogeneous symmetric polynomials. See [4]
and [37].

The family of complete homogeneous symmetric polynomials with n real variables zi,...,z, and
degree d € N is given as follows
hO('Ila v 7mn) = 1a

ha(z1,...,2p) == Z Tiy - Ty (d>1).

1<ip <--<ig<n

The main strategy used to prove the positivity of hg, for all even degrees d > 2, consists of using
Schur-convexity and majorization arguments. Note that, the concept of majorization is a powerful
topic of research with several interesting applications: a necessary and sufficient condition for a linear
map to preserve group majorizations [131]; properties on superquadratic functions related to Jensen—
Steffensen’s inequality [1]; other majorization properties [83, 132]. Moreover, we notice that the
possibility to define the concept of majorization into the spaces of curved geometry was confirmed in
[126]. More results on this topic can be found in [112, 113, 114, 117, 124].

In order to present the current settings we address in this part of the thesis, let us introduce the
concepts of stronger and weaker hg convexity for functions defined on R™. A positivity result given in
[153] asserts that: if d > 2 is an even natural index, then

ha(z1,22,...,2n) >0 (z1,...,2n €R). (1.0.1)

Using ideas from (1.0.1) we define a new concept of convex function, as a perturbed of convex function
with a complete homogeneous symmetric polynomial.

Definition 1.0.1. Let C > 0 and let d > 2 be an even natural number. A function f : R —» R
is said to be hg strongly convex with modulus C' if the function f(-) — C hy(+) is convex. Similarly, a
function f: R™ — R is called hg weakly convex with modulus C' if the function f(-)+C hq(-) is conver.

In order to motivate the concept of he strongly/weakly convex function we recall the related notion
of uniformly convex function.

Definition 1.0.2. Let C > 0. A function f : R™ — R is said to be uniformly convex with modulus
Cif f(-) = C ||-||* is convex. Equivalently, the function f is uniformly convex with modulus C if and
only if the following inequality holds

FIA=Nx+Xy)) < (1= X F() +Af(y) = OAL =) [Ix =y, (1.0.2)

for all x,y € R™ and X € [0,1].
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It is natural to show that (1.0.2) holds similarly, even in the context of hg strongly convexity. More-
over, our objective is to study the general and difficult case, i.e. hg strongly convexity, for any even
natural number d > 2. We also use fine estimates in order to get hg versions of Jensen’s, Hardy-
Littlewood-Polya’s and Popoviciu’s inequalities. Other classical inequalities are also obtained, which
certifies that the family of hy strongly convex functions lead to new ideas of further research. We
strongly consider that the new concept and results presented in this part of this chapter can be used
to establish connections and further applications related to other important scientific achievements in
literature (see [2, 3, 15, 96, 133, 169]).

More precisely, we obtain an inequality related to (1.0.2), in the case of hs strongly convex functions.

Proposition 1.0.1. Let C' > 0. Then, the function f : R™ — R is he strongly convex with modulus C
if and only if
F(1 = Nx+2y)) < (1= N F() + AF(y) = CA(L = \ha(x — ). (1.0.3)

for all x,y € R™ and X € [0, 1].

In the general case, for any even natural number d > 2, we get a nice extension of Proposition 1.0.1.

Theorem 1.0.1. Let C' > 0 and let d > 2 be an even natural number. Then, the function f: R™ — R
s hq strongly convexr with modulus C' > 0 if and only if

FIL=Nx+Ay) < (1= A f(x) + Af(y) = CAZ(1 = \)Zha(x — y), (1.0.4)
for all x,y € R" and X € [0,1].

Moreover, for each x,y € R"™ and X € [0, 1] we have

NI

ha((1 = N)x + Ay) = (1= Nha(x) — Mig(y) < —A2(1— A)2hg(x — y). (1.0.5)

It is worth mentioning that, even if hy polynomials cannot itself induce a norm (for example, in
majorization settings, we have that, for any two vectors satisfying = < y, ha(y) > hao(z) + ha(y — x),
see Lemma 2.2.1) we can introduce some polynomial norms. That means to introduce the norms that
are the d" root of a hy polynomials. For more details, see the last chapter of this doctoral thesis,
devoted to some perspectives.

For the convenience of the reader, in the following sentences we present some basic theoretical facts
about strongly convex functions with modulus C' > 0. Using our estimates from (1.0.1) and (1.0.3) we
recover some well-known classical results within uniform convex functions theory. More details can be

found in [97].
Theorem 1.0.2. Let C' > 0, d > 2 an even natural number and let f :  — R be a hy strongly convex
with modulus C' defined on a convex set 2 C R™. Then the following statements hold true:

(1) If Q is an open set, then f is a continuous function on ).

(i) Any local minimizer of f is a global minimum for f.

(iii) Moreover, the global minimizer of f is unique.
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In a similar way, we extend the notion of elliptic differentiable functions.

Definition 1.0.3. We say that a function J : Q@ C R™ — R is elliptic (a-elliptic) if it is differentiable
on ) and there exists an o > 0 such that

(VI(x) - VI(y),x—y) >alx—-y|*> (x,y€Q). (1.0.6)

Definition 1.0.4. We say that a function J : @ C R™ — R is ho-elliptic if it is differentiable on 2
with modulus C' if
(VJ(x) - VI(y)x—y) > Chalz—y)  (x,y €9). (1.0.7)

By considering the convex function g : Q — R, where g(x) = J(x) — Cha(x), and using in addition
the well-known convex inequality

9(y) 2 9(x) + (Vy(x),y —x)  (x,y €Q),
we can get easily the following two results.
Theorem 1.0.3. Let J : Q2 — R be a differentiable function defined on the convex set 2 C R™. Then
the following affirmations are equivalent:
(1) J is hy strongly conver with modulus C.
(13) The following inequality holds true

J(x)=J(y) =2 (VJ(y),x—y)+Cha(x—y) (x,y €Q). (1.0.8)

(791) J is ho-elliptic on Q with modulus 2C, i.e.

(VI(x) =VJ(y),x —y) > 2Chs(x—y)  (x,y € Q).
Theorem 1.0.4. If U C R"” is a nonempty, closed and convex set, and J is ho strongly convex with
modulus C' > 0, then there exists an unique x € U such that

J(x) = 1;16111} J(y). (1.0.9)

On the other hand, it is natural to present some remarks concerning the possibility of defining a
scalar product in terms of hg symmetric polynomials. Thus, defining the map (-, ), : R" x R" — R
as follows

%, y)y = hz(x+Y);h2(X—Y) (x,y € R™), (1.0.10)

a straightforward computation gives

(. y)n = (x,y) +% <Z$zzyz - ;m&) ;

=1 i=1

n
where (x,y) = Z x;y; denotes the usual scalar product in R"™.
i=1
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Notice that (x,y); satisfies the properties needed for a scalar product, i.e.

(X, ¥)h = (¥, %)n (x,y € R"),
(ax,y)n = a(x,y)n (x,y € R",a € R),
(x+2z,y)h=Xy)ht+(zyhr (xyz€eR"),
(x,x)p, = ha(x) >0 (x € R").

Finally, if ha(x) = 0 we have
1 1
ho(x) = 5(:(:1+---+xn)2+§(x%+---+xﬁ) =0,
which gives x = 0.

Hence, (-, )y is a scalar product and a distance (see [97]) can be given by

Exy)=vVx-y.x-yn (xyeR". (1.0.11)

We end the resume of this part of Chapter II by presenting an inequality of Jensen’s type in the case
of hg strongly convex functions, for any even natural number d > 2.

Proposition 1.0.2. (Jensen’s type inequality for hg strongly convexity) Let C > 0 and let d > 2
be an even natural number. If f : I — R, I C R is a given function such that F(z1,...,2,) =
f(x1) + -+« + f(zn) is hg strongly convex with modulus C on I™ then, for all z1,...,x, € I, the
following inequality holds

; (acl + n —i—xn) PRICH RSN (C7)

n

—Cl n+d—1 T R ) d_x‘f—k---—i—x‘fl
n d n n ’

In order to compare Jensen’s type inequalities for hgq strongly convex functions and uniformly convex
functions we present the following result (which can be seen as a consequence of the results from [170]).

(1.0.12)

Proposition 1.0.3. (Jensen’s type inequality for uniform convexity) Let C > 0 and let f : [ — R,
I C R be such that F : I" — R, defined as F(x1,...,x,) = f(x1) + -+ f(xy), is uniformly convex
with modulus C. Then, for all x1,...,z, € I the following inequality holds

; <x1 +_T.L.+xn> Sa)rer flan) C S (@mi—a) (1.0.13)

n
Remark 1. Let C > 0 and let f : I — R, I C R such that F : I"" — R, defined as F(x1,...,x,) =
f(x1) 4+ -+ f(xn), is ha strongly convex with modulus C. Then, for all z1,...,x, € I, the following
mequality holds

; (:m n n +xn> )t fla) ol S (i — ) (1.0.14)

n 2n?

n —
1<i<j<n

1<i<j<n

Note that the two constants appearing in front of right hand error term in (1.0.13) and (1.0.14) are
different and depend on n. Hence, we cannot move from he strongly convex case to the uniformly
convezx case, by only changing the modulus.



CHAPTER 1. INTRODUCTION, PRELIMINARIES AND MAIN RESULTS 7

In the following we present several majorization type inequalities in the context of hy strongly convex
functions. More precisely, we are dealing with extensions of Hardy-Littlewood-Polya’s and Popoviciu’s
inequalities in the case of our new class of convex functions.

Let us consider x* and y* two vectors with the same entries as x, respectively y, expressed in
decreasing order, as

pf > zah gy > >yl

We say that, the vector x is majorized by y (abbreviated, x < y) if

k k
Doar<d oy (I<k<n-1),
=l =1 (1.0.15)
n n
>oat=3 it
i=1 i=1

More details and applications concerning the majorization theory can be found in [104]. We refer to
the monotonicity with respect to the majorization order, the so called Schur-convex property, which
has been introduced by I. Schur in 1923.

Definition 1.0.5. The function f : A — R, where A is a symmetric subset of R™, is called Schur-
convex if x <y implies f(x) < f(y).

A simple computation tool (see, for instance, [104]) which is used to study the Schur-convexity
property of a function is given as follows. For any symmetric function f(x) = f(x1,x2,...,x,) having
continuous partial derivatives on I = I x I x ... X I, the Schur-convexity property is reduced to check
the following inequality

of  of o
J 6301 a.l‘j !

We introduce now the notions of hg strongly Schur convexity and uniformly Schur convexity.

Definition 1.0.6. Let C' > 0. A function f : I — R is said to be hg strongly Schur-convexr with
modulus C' if the function f(-) — C hg(-) is Schur-conver.

We first remark that a similar Jensen’s type inequalities is obtained by using this time majorization
arguments obtaining different constants in front of the right hand error term.

Proposition 1.0.4. (Jensen’s type inequality via Hardy-Littlewood-Pdlya’s inequality) Let C > 0 and
let f:1—R,ICR bea function such that F(z1,...,x,) = f(z1) + -+ f(xn) is hq strongly Schur

convexr with modulus C on I"™. Then, for all x1,...,x, € I the following inequality holds
x4+ flz)+-+ fl@,) C 2
f <n> < - ~ 53 Z (z; — )2 (1.0.16)
1<i<j<n

We are able now to present Hardy-Littlewood-Pélya’s majorization theorem for hg strongly convexity
case.
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Theorem 1.0.5. (Hardy-Littlewood-Pdlya’s inequality for strongly hg functions) Let C > 0 and let
f:I—=R, ICR bea function such that F(z1,...,x,) = f(x1) + -+ f(zyn) is hq strongly Schur
convex with modulus C' on I"™. If x <y on I" the following inequality holds

Zf vi) ZZ ;) + Cha(y — x). (1.0.17)

Now, we can present some natural extensions of Popoviciu’s inequalities for hs strongly convex
functions.

Proposition 1.0.5. (Popoviciu’s type inequality for ho strongly convezity) Let C > 0 and let f : [ —
R, I C R be a function such that F(x1,...,x,) = f(x1)+ -+ f(zn) is hq strongly Schur convexr with
modulus C on I"™. Then, for all z,y,z € I the following inequality holds

f(x)+f;y)+f(Z) +f<w+y+w> . 2<f(w+y>+f<$+2>+f<y+2>) (1.0.18)

3 3 2

C
(@ =9+ —2)7*+(z—2)?).
36
The third part of Chapter II is based on the paper G. M. Lachescu, and I. Roventa, The Hardy-

Littlewood-Pdélya inequality of majorization in the context of w-m-star-convex functions, Aequationes
Mathematicae 97 (2023), 523-535.

In this part, we extend the Hardy-Littlewood-Pdlya inequality of majorization for w-m-star-convex
functions in the framework of ordered Banach spaces. Several open problems which seem to be of
interest for further extensions of the Hardy-Littlewood-Poélya inequality are also included.

Notice that, in the early 1950s, the Hardy-Littlewood-Pdélya inequality was extended by Sherman
[160] to the case of continuous convex functions of a vector variable by using a much broader concept
of majorization, based on matrices stochastic on lines. The full details can be found in [114], Theorem
4.7.3, p. 219. Over the years, many other generalizations in the same vein have been published. See,
for example, [31, 117, 118, 124, 125, 126, 133].

As was noticed in [112] and [113], the Hardy-Littlewood-Pélya inequality of majorization can be
extended to the framework of convex functions defined on ordered Banach spaces. Our aim is to prove
that the same works for the larger class of w-m-star-convex functions.

We also present different types of majorization relations in ordered Banach spaces. The corresponding
extensions of the Hardy-Littlewood-Pdélya inequality constitute another the objective. We end with
mentioning several open problems which seem to be of interest for further extensions of the Hardy-
Littlewood-Pdlya inequality.

Let us consider FF a Banach space and C a convex subset of it.

Definition 1.0.7. Let m be a real parameter belonging to the interval (0,1]. A function ® : C' — R
is said to be a perturbed m-star-convex function with modulus w : [0,00) — R (abbreviated as w-m-
star-convex function) if it fulfils an estimate of the form

(1 = A)x + Amy) < (1= A)(x) +mAD(y) = mA(l = Mw ([Ix =y,
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for allx,y € C and X € (0,1).

The w-m-star-conver functions associated to an identically zero modulus will be called m-star-conver.
They satisfy the inequality

O((1 = N)x+ Amy) < (1= XN)P(x) + mAP(y),

for allx,y € C and X € (0,1).

Notice that the usual convex functions represent the particular case of m-star-convex functions where
m = 1. On the other hand every convex function is m-star-convex (for every m € (0,1]) if 0 € C' and
®(0) < 0. Every w-m-star-convex function associated to a modulus w > 0 is necessarily m-star-
convex. The w-m-star-convex functions whose moduli w are strictly positive except at the origin
(where w(0) = 0) are usually called uniformly m-star-convez. In that case the definitory inequality is
strict whenever x # y and X € (0,1).

The theory of m-star-convex functions was initiated by Toader [166], who considered only the case
of functions defined on real intervals. For additional results in the same setting see [108] and the
references therein. A simple example of a (16/17)-star-convex function which is not convex is

f:]0,00) =R, f(x) =2 523+ 92?2 — 5z. (1.0.19)

Under the presence of Gateaux differentiability, w-m-star-convex functions generate specific gradient
inequalities that play a prominent role in our generalization of the Hardy-Littlewood-Pélya inequality
of majorization.

Lemma 1.0.1. Suppose also that C' is an open convex subset of the Banach space E and ® : C' — R
is a function both Gateaux differentiable and w-m-star-convex. Then

me(y) = ¢(x) + d®(x)(my — x) + mw (|lx - y|), (1.0.20)
for all points x,y € C.

Remark 2. Lemma 1.0.1 shows that the critical points x of the differentiable w-m-star—convez func-
tions are those for which w > 0 fulfill the property

inf ®(y) > d(x).
m inf, (y) > o(x)

Unlike the case of convex functions of one real variable, when the isotonicity of the differential is
automatic, for several variables, this is not necessarily true in the case of a differentiable convex
function of a vector variable. See [112, Remark 4].

In this part of the doctoral thesis we are dealing with functions defined on ordered Banach spaces,
that is, on real Banach spaces endowed with order relations < that make them ordered vector spaces
such that positive cones are closed and

0 < x <y implies [|x| < [y

The Euclidean N-dimensional space RY has a natural structure of an ordered Banach space associ-
ated to coordinatewise ordering. The usual sequence spaces cq, ¢, P (for p € [1,00]) and the function
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spaces C'(K) (for K a compact Hausdorff space) and LP (i) (for 1 < p < oo and p a o-additive posi-
tive measure) are also examples of ordered Banach spaces (with respect to coordinatewise/pointwise
ordering and natural norms).

A map T : E — F between two ordered vector spaces is called isotone (or order preserving) if
x <y in E implies T'(x) < T(y) in F'

and antitone (or order reversing) if —T is isotone. When T is a linear operator, T is isotone if and
only if 7" maps positive elements into positive elements (abbreviated, 7" > 0).

For basic informations on ordered Banach spaces see [113]. The interested reader may also consult
the classical books of Aliprantis and Tourky [9] and Meyer-Nieberg [106]. As was noticed by Amann
[10], Proposition 3.2, p. 184, the Gateaux differentiability offers a convenient way to recognize the
property of isotonicity of functions acting on ordered Banach spaces: the positivity of the differential.
We state here his result (following the version given in [112], Lemma 4):

Lemma 1.0.2. Suppose that E and F are two ordered Banach spaces, C' is a conver subset of E
with nonempty interior int C' and ® : C — F is a convex function, continuous on C' and Gdteaux
differentiable on int C. Then ® is isotone on C if and only if ®'(a) > 0 for all a € int C.

Remark 3. If the ordered Banach space E has finite dimension, then the statement of Lemma 1.0.2
remains valid when the interior of C is replaced by the relative interior of C. See [114], Fzercise 6,
p. 81.

We can now introduce the concept of majorization in the framework of ordered Banach spaces. Since
in an ordered Banach space not every string of elements admits a decreasing rearrangement, we will
concentrate on the case of pairs of discrete probability measures at least one of which is supported by
a monotone string of points. The case where the support of the left measure consists of a decreasing
string is defined as follows.

Definition 1.0.8. Suppose that chvzl Ai0x, and Zszl A0y, are two discrete Borel probability mea-
sures that act on the ordered Banach space E and m € (0,1] is a parameter. We say that Zi\;l AiOx,
is weakly mL‘-magjorized by Z,ivzl Aidy, (denoted Zé\;l MeOx). =<wmLt Zgil Aily, ) if the left hand
measure is supported by a decreasing string of points

X1 Z cee > XN (1021)

and

Z)\kxk < Z)\kmyk foralln e {1,...,N}. (1.0.22)
k=1 k=1

We say that Zszl Ak0x,, is mLY-majorized by Z}ngﬂ A0y (denoted
SN Akl <t Son_ Akby, ) if in addition

N N
Z )\kxk = Z )\kmyk. (1.0.23)
k=1 k=1
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Notice that the context of Definition 1.0.8 makes it necessary that all the weights A1, ..., Ay belong to
(0,1] and Z{Ll Ak = 1. The three conditions (1.0.21), (1.0.22) and (1.0.23) imply myy < xy < x1 <
my1 but not the ordering y; > --- > yy. For example, when N = 3, one may consider the case where

m=1, A1 =X=X3=1/3, x1 =x2=%X3 =X

and
Y1 =X, yQ:X+Z7y3:X_Z7

z being any positive element.

Our objective is to consider the corresponding extensions of the Hardy-Littlewood-Pdlya inequality
of majorization for <,,,r1 and<,, 1. Moreover, we also present also a Sherman type inequality. The
proof of the following theorem is inspired by the techniques successfully used in [101] and [112].

Theorem 1.0.6. Suppose that Eivzl Aidx, and chvzl A0y, are two discrete probability measures
whose supports are included in an open convex subset C of the ordered Banach space E. Ifzgzl MeOxy <mLt

Zivzl Akly, , then
N N N

m> M@(yr) =D Me@(xi) + Y Mew(lIxn — yill), (1.0.24)

k=1 k=1 k=1
for every Gateaux differentiable w-m-star-convex function ® : C — F whose differential is isotone and
satisfies the hypotheses of Lemma 1.0.1.

The conclusion (1.0.24) still works under the weaker hypothesis ZkN:1 MeOx, = wmIt Zgzl MOy
provided that ® is also an isotone function.

The last part of Chapter II is based on the paper G. M. Lachescu, M. Malin, and I. Roventa, Convex
type inequalities with nonpositive weights, (2024), submitted for publication.

The weighted concept of majorization between two vectors u = (uy,...,u;) € I v= (V1,...,0m) €
I™ with nonnegative weights a = (ay,...,a;) € [0,00)! and b = (b1,...,by) € [0,00)™, where I is an
interval in R and m, [ > 2, has been defined in S. Sherman [160]. The concept of weighted majorization
is defined by assuming the existence of a columns stochastic matrix A = (a;;) € My, (R), i.e. a matrix
with nonnegative entries and columns sums equal to 1, such that

l
bj :Zaiaﬁ, (j = 1,...,m)7 (1025)
=1
U; = Zvjaji, (Z = 1,...,[). (1.0.26)
j=1

Under conditions (1.0.25) — (1.0.26) it is proved that, the following inequality

holds for every convex function f : I — R. See [160]. We can write conditions (1.0.25) — (1.0.26) in
the matrix form

b=aAT and u=vA.
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We write
(u,a) < (v,b)

and say that a pair (u,a) is weighted majorized by (v,b) if (1.0.25) — (1.0.26) are satisfied for some
columns stochastic matrix A. Note that, in the case [ = 1 and b = [1] we deduce Jensen’s inequality.
When m = [ and all weights a; and b; are equal to 1/m, the condition (1.0.25) assures the stochasticity
on rows, so in that case we deal with doubly stochastic matrices.

Since all these above inequalities are dealing with positive weights the study of the case of nonpositive
weights is very challenging and this is our next important objective in this thesis. In this context we
recall one of the first relevant step, the so called Jensen Steffensen inequality. We refer to [115] for the
following result.

Theorem 1.0.7. Let z, < xp—1 < -+ < x1 be points in [a,b] and let p1,...,p, be real numbers such
that the partial sums Sy = Zle p; verify the relations

0<S,<S, and S, >0.

Then for every convex functions f : [a,b] — R we have the inequality
1 < 1 «

Fla D omere | < < pef (o).
S k=1 Sn k=1

Our next aim is to present new extensions of the above inequality for the case of nonpositive weights.
More precisely, we try to extend Theorem 1.0.7 in the framework of R™ and then to derive Sherman
and Jensen Steffensen’s type inequalities for perturbed convex functions with complete homogeneous
symmetric polynomials. Our strategy can be also adapted to more general spaces, not only in R™, but
also in spaces with curved geometry.

Inspired from [115] we shall use the following notation related to z1, ..., 2z, € R” and py,...,pm € R:
Z=p1z1 + -+ PmZm, (1.0.27)

Py =p1+--+p (k€ {1,2,...,m}),

Po=pp+- - +pnm (ke {1,2,...,m}).

Definition 1.0.9. We say that a sequence z1,...,z, € R"™ is monotonic decreasing with respect to
majorization relation iff the following relations hold

Zon = Zp—1 < -+ < 2o < Z7. (1.0.28)

We are now in position to present the extension of Jensen-Steffensen’s type inequality in R”.

Theorem 1.0.8. Let I be an interval in R and m, n > 1. If f : I — R s a convex function invariant
under permutation of coordinates, then for every zi,...,2z, € I™, which is monotonic decreasing
with respect to majorization relation, and every real m-tuple p = (p1,...,pm) such that, for every
i€{1,2,...,m} we have

0< P <P,=1,

then the following inequality holds

f (ZP%’) <Y pif (zi).
i=1 i=1
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For the convenience of the reader we also present the case of increasing sequences with respect to the
majorization relation.

Theorem 1.0.9. If f : I — R is a convex function invariant under permutation of coordinates, then
for every z1,...,2z, € I, which is monotonic increasing with respect to majorization relation, and
every real m-tuple p = (p1,...,pm) such that, for everyi € {1,2,...,m} we have

then the following inequality holds

We can now develop the previous results for the case of nonpositive weights.

The first step is introduce the weighted concept of majorization between two n-tuples x = (x1,..., ),
Y= (Y1, Ym), where z1,...,2; € I", y1,...,¥m € I", with real weights a = (a1, ...,q;) € R! (which
can be nonpositive) and b = (by,...,by) € [0,00)™, where I is an interval in R and m,{ > 2.

We define the concept of weighted majorization (x,a) < (y,b) by considering any matrix A = (o;) €
M (R), verifying

0< AL <AM =1, (1<k,i<m) (1.0.29)
where ‘
Al =ay+-+am  (kef{l,2,....m})  (1<k<m), (1.0.30)
such that l
bj = aiogi, (j=1,...,m), (1.0.31)
=1
X; = iyjaﬁ, (i=1,...,0). (1.0.32)
j=1

We can present now the extension of Sherman’s inequality in R™, when the weights are allowed to
be nonpositive.

Theorem 1.0.10. If
X = Xm—1 <+ < X9 < X1. (1.0.33)

and let us suppose that conditions (1.0.29)-(1.0.32) are satisfied. Then, the following inequality

l m
D aif(xi) <> bif(y;)
i=1 j=1
holds for every convex function f : I — R which is invariant under permutation of coordinates.

The next topic we address in this chapter is related to implement a similar study of a perturbed
family of convex functions by complete homogeneous symmetric polynomials with even degree.

Inspired from the strategy used in [1, 2, 3, 15, 30, 83] we have the following result.



CHAPTER 1. INTRODUCTION, PRELIMINARIES AND MAIN RESULTS 14

Theorem 1.0.11. (Jensen-Steffensen’s type inequality) Let C > 0 and let I be an interval in R. If
f I = R is hy strongly convex with modulus C' and invariant under permutation of coordinates, then
for every monotonic sequence z1,...,2z, € 1", as in (1.0.28), and every real n-tuple p = (p1,...,Pm)
such that, for every i € {1,2,...,m}, 0 < P; < P,, =1, the following inequality holds:

f (Zpizz) < szf (zi) — CZpihg (z; — z),
i=1 i=1 i=1
where z is defined in (1.0.27).

Using our extension of Sherman’s results (for nonpositive weights) we can deduce Sherman’s inequality
for hy strongly convex functions with modulus C'.

Theorem 1.0.12. (Sherman’s type inequality) Let C' > 0 and let I be an interval in R. Let z =
(z1,...,21), Yy = (Y1,...,Ym), wherezy,...,z €I", y1,...,ym € I" and leta = (ay,...,a;) € R and
b= (b1,...,by) € [0,00)™ be such that (y,b) < (z,a). If in addition we assume that

Zy < Zmp—1 =R <172y <171, (1.0.34)

then for every f : I™ — R hy strongly conver with modulus C and invariant under permutation of
coordinates we have

l m l m
D bif(yi) <D af(z) = CD b Y ajiha(z; —yi).
i—1 i=1

i=1  j=1

Chapter III of the present doctoral thesis is based on the paper G.M. Lachescu, M. Malin, I. Roventa,
On the barycenter for discrete Steffensen Popoviciu measures on global NPC spaces, submitted for
publication.

The first part of this chapter is an introductory one, we present theoretically aspects about global
NPC spaces (properties and useful results). In the second part of this chapter we put in a new light the
concept of barycenter for discrete Steffensen Popoviciu measures supported in some points belonging
to a space with curved geometry. More precisely, we ensure the existence of the barycenter if we relax
the restrictions imposed to the weights of the measure. As applications, even in the case of nonpositive
weights we deduce Jensen-Steffensen’s, HLP’s and Sherman’s type inequalities on global NPC spaces.

Several authors performed an intense research activity to extend majorization theory beyond classical
case of probability measures, i.e. Steffensen Popoviciu measures. The main point of interest into this
topic of research is to offer a large framework under which Jensen’s type inequalities works. Jensen
Steffensen’s inequality (see [116, Theorem 2.4.4]) reveals an important case when Jensen’s inequality
works beyond the framework of positive measures. In fact, this is our aim, to relax the concept of
barycenter in spaces with curved geometry, in order to provide more insight into the relation between
signed measures and Jensen’s type inequalities.

In fact, the above result is related to the general concept of Steffensen Popoviciu’s measure, as it is
presented in [114, 115, 116].

Definition 1.0.10. Let K be a compact convex subset of a real locally convex Hausdorff space E. A
Steffensen Popoviciu measure on K is any real Borel measure p on K such that u(K) > 0 and

/ f(z) dp(z) >0,
K
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for every positive, continuous and convex function f: K — R.

The characterization of discrete Steffensen Popoviciu’s measures is presented in [116, Corollary 9.14].

Proposition 1.0.6. Suppose that 1 < --- <z, are real points and p1,...,pn are real weights. Then,
the discrete measure =Y ;_ pp0z, is a Steffensen Popoviciu measure if

n m n
Zpk>0 and OSZkaZpk (me{l,...,n}).
k=1 k=1 k=1

The concept of barycenter for Steffensen Popoviciu measures was fully discussed in [116, Lemma
9.2.3 and Theorem 9.2.4]. But, our aim is to give a new perspective to the barycenter concept on more
general spaces, namely global NPC spaces, via the majorization techniques.

In what follows we shall deal with the relation of weighted majorization <, for pairs of discrete
probability measures. In the context of Euclidean space R™, the following relation

l m
> Xida, <> 1156y, (1.0.35)
i=1 j=1

means the existence of a m x [-dimensional matrix A = (a;;); ; such that the next four conditions are
fulfilled:

a;j > 0, for all 4, j, (1.0.36)
m
dai=1, i=1,...,1, (1.0.37)
j=1
!
My = Za]’i)\i, j = 1, e,y (1038)
i=1
and
m
xi:Zaﬁyj, ’iIl,...,l. (1039)
j=1

Under the above settings, S. Sherman [160] use the concept of weighted majorization and proved
that, the following inequality

l m
> ONif (@) <Y uif(yy)
i=1 j=1

holds for every convex function f: I — R.

Our next aim is to extend Theorem 1.0.7 in the framework of global NPC spaces and then to derive
HLP’s, Sherman’s and Jensen Steffensen’s type inequalities. Hence, we consider the weighted concept
of majorization within a class of spaces with curved geometry that verifies ta weaker form of Apollonius’
theorem relating the length of a median of a triangle to the lengths of its sides.

Definition 1.0.11. A global NPC space is a complete metric space M = (M, d) for which the following
inequality holds true: for every pair of points xqg,x1 € M there exists a point y € M such that for all
points z € M,

1 1 1
d*(z,y) < §d2(2’7l’0) + §d2(2’7~”’31) - Zdz(woa x1). (1.0.40)
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Here "NPC” stands for "nonpositive curvature”. Global NPC spaces are also known as CAT(0)
spaces or Hadamard spaces. For more details, the interested reader may consult the excellent survey
of Sturm [163] (and also the books of Ballman [17], Bridson and Haefliger [32], and Jost [80]).

In a global NPC space, each pair of points g, 21 € M can be connected by a geodesic (that is, by
a rectifiable curve v : [0,1] — M such that the length of v[j, 4 is d(v(s),7(t)) for all 0 < s <t < 1).
Moreover, this geodesic is unique.

The point y that appears in Definition 1.0.11 is the midpoint of xg and x; and has the property

1
d(JUovy) = d(y,ﬂfl) = §d($0,931)-

The case of convex combinations for zg and 27 can be introduced as follows:

(1 = A)ao B Az = argmin [(1 — N d?(z0, 2) + Ad?(z1, z)] . (1.0.41)
ze€M

See Bhatia [24], Proposition 6.2.8, for the case A = 1/2. Here, an important role is played by the
inequality (1.0.40), which assures the uniform convexity of the square distance.

In a global NPC space M = (M, d), the convexity notions are introduced at follows.

Definition 1.0.12. A set C C M is called convex if ¥([0,1]) C C for each geodesic v : [0,1] - M
joining the points v(0),~v(1) € C.

A function f : C — R is called convex if C' is a convex set and for each geodesic «y : [0,1] — C the
composition f o~y is a convex function in the usual sense, that is,

fOy(@) < (X =8)f(7(0)) + (v (1))
for all t € [0,1].

The distance function d is convex on M x M, while the functions d“(-, z), with a > 1, are convex
on M. See Sturm [163, Corollary 2.5], for details. Despite the fact that the property of associativity
of convex combinations fails it is worth mentioning that Jensen’s inequality works in the context of
global NPC spaces. Note that, the basic ingredient, the barycenter of a discrete probability measures
A =>"" 1 Xidy, is defined by the formula

1 n
bar(A\) = arg min — N d? 2, X5).
) = argmin 5 3 Xz,

In the case of Hilbert spaces, this coincides with the usual definition of barycenter in flat spaces, which
is given by Y " | Niz;.

The next result is a particular case of the integral form of Jensen’s Inequality, which was first noticed
by Jost [79] (and later extended by Eells and Fuglede [55]). A probabilistic version can be found in
[163].

Theorem 1.0.13. (The discrete form of Jensen’s Inequality). For every continuous convex function
f: M — R and every discrete probability measure X\ =Y.' | N\idy, on M, we have the inequality

Flbar(3) < 3" Acf (w0,
=1
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When z1,...,Zm,y1,...,Ys are points in a global NPC space (M,d) and Aj,..., A\, in [0,1] are
weights that sum to 1, we define the relation of majorization

i )\15% =< i pjéyj (1.0.42)
i=1 j=1

by asking the existence of an m x n-dimensional matrix A = (a;;);; that is stochastic on rows and
verifies in addition the following two conditions:

m
pi=>Y aghi, j=1,....n (1.0.43)
i=1
and .
1
x; = argmin— Z aijd*(z,y;), i=1,...,m. (1.0.44)
zeM 2 j=1

The existence and uniqueness of the optimization problems (1.0.44) is assured by the fact that the
objective functions are uniformly convex and positive. See Jost [80], Section 3.1, or Sturm [163,
Proposition 1.7, p. 3]. According to our definition, we have

Opar(x) < A

for every discrete Borel probability measure X\. The following theorem in [126] offers an extension of
the Hardy-Littlewood-Pélya Theorem (HLP) in the context of global NPC spaces.

Theorem 1.0.14. If the relation
m n
REARD Y
i=1 j=1

hold in the global NPC space M, then for every real-valued continuous convex function f defined on a
convex subset U C M that contains all points x; and y;, we have the following inequality

> Nif (@) < pif ()
i=1 j=1

Moreover, using Theorem 1.0.14 we have the following result, in which the properties of convexity
and Schur convexity are connected.

Proposition 1.0.7. (Lim [98], Niculescu and Roventa [126]) If we have that

1 < 1 <&
EZ&%%EZ%“
=1 =1

in the global NPC space M and f : M™ — R is a continuous convex function invariant under the
permutation of coordinates, then

f(xlv"'vxn> < f(yla)yn)

Inspired from [94], in this thesis we present an extension of barycenter for Steffensen Popoviciu
discrete measures, where the most important ingredient in NPC spaces is the barycenter of a discrete
probability measures A = > ; X\idy,. Thus, in what follows we relax the concept of barycenter by
considering nonpositive weights for the discrete measures.
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Definition 1.0.13. Let X := {z1,...,x,} be a family of points in a global NPC space M, all these
points belonging to the same geodesic [x1,xy,| and, in addition the following assumptions are verified

T; € [Ti-1, Tit1] (1€{2,3,...,n—1}).
For any family of real weights A := {\1,..., A} which verify
0<85 <8, =1 (7:6{1,2,...,%})7

where
Sp=A+- "+ (k€{1’2)--'an})v

we define the notion of weak barycenter of the family of points X with respect to the family of real
weights A as the unique point X on the geodesic [x1,xy,] satisfying

d(}_{7 a;l) = gzd(xz, .T1) + 5’3d(1’3, 1’2) + -+ S'nd(a:n, xn_l), (1.0.45)
or, equivalently,
d(l‘n,)_() = Sld(IEQ, $1) + Sgd(xg, SCQ) + -4 Snfld(l‘n, $n,1), (1046)

where
Sk:)\k—l—---—i-)\n (kG{I,Q,...,n}).

Remark 4. Note that, the weak barycenter X from (1.0.45) and (1.0.46) is well defined and we have
that
d(x,z1 + d(zn,X) = d(z2,21) + d(x3,22) + - - - + d(2p, Tpm1) = d(x0, 1),

which confirm the fact that X lies on the geodesic [x1,xy,]. Moreover, using (1.0.45) or (1.0.46), in flat
spaces, so we recover the following classical formula

X=MNx1+ -+ ApTn.

We are now in position to present Jensen-Steffensen’s inequality in the most relevant case, where
we have considered the maximum possible number of nonpositive weights. In fact, in Chapter III a
completely new strategy is used to prove the following result.

Theorem 1.0.15. (The discrete form of Jensen-Steffensen’s Inequality) Let X and A be given as in
Definition 1.0.13, but with nonpositive weights Ao, A3, ..., Ap—1 < 0.

Then, for every continuous convex function f : M — R we have the inequality

F&) <D Nif ().
i=1

In order to obtain in thesis, Sherman’s type inequalities with nonpositive weights we firstly introduce
the relaxed concept of majorization between two n-tuples of points in a global NPC space (M, d).

Definition 1.0.14. Let x = (z1,...,2n) € M", y = (y1,...,yn) € M™, n > 2.

We define the concept of majorization x <y by asking the existence of a matriz A = (o) € M (R)
such that
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e a;; <0 (i #1ori#l),

® Vi € [Yi—1,Yi+1) (i €42,3,...,1 —1}) verify that all these points belong to the same geodesic
[yl’ ym} )

e x; is the weak barycenter of the family of points X := {y1,...,ym} with respect to the family of
real weights N, i.e. the unique point z; on the geodesic [y1,ym| satisfying

d(xi, 1) = S3d(y2, y1) + Sd(ys, y2) + -+ + S5d(Yn, Yn—1), (1.0.47)
or, equivalently,

A(Yn, ) = STd(y2, 1) + S5d(ys, y2) + - - - + Si_1d(yn,yn—1), (1.0.48)

where ‘
AN o= {ayj, ..., anj} (J€{1,...,m}),
S;Z;:akj‘i‘"'_‘_anj (ke{1,2,...,1}),
Sl—anj+tay (ke {l,2,....1}),
Oggigggzl (ke{1,2,...,1}).

We can present now the extension of HLP’s inequality in a global NPC space (M, d), when the weights
are allowed to be nonpositive.

Theorem 1.0.16. In the hypotheses from Definition 1.0.14 let us suppose that conditions (1.0.47) are
satisfied. Then, the following inequality

n n
> F@) <D fw)
i=1 i=1
holds for every convex function f: M — R.
We are in position to introduce another result of this thesis, the relaxed weighted concept of ma-

jorization between two n-tuples of points in a global NPC space M.

Definition 1.0.15. Let x = (z1,...,2;) € M\, y = (y1,...,Ym) € M™, m,1 > 2. We consider some
real weights a = (a1,...,a;) € RY (which can be nonpositive) and b = (b1, ..., by) € [0,00)™.

We define the concept of weighted majorization (x,a) < (y,b) by asking the existence of a matriz
A = (ayj) € Myn(R) such that
o a;; <0 (it #Lori#l),

® Vi € [Yi—1,Yi+1) (i €42,3,...,1 —1}) verify that all these points belong to the same geodesic
[yh ym} ’

e x; is the weak barycenter of the family of points X := {y1,...,ym} with respect to the family of
real weights N, i.e. the unique point z; on the geodesic [y1,ym| satisfying

Az, 1) = Syd(y2, v1) + S3d(yz, y2) + - + SLd(Yn, Yn_1), (1.0.49)
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or, equivalently,

A(yn, 7:) = S{d(y2, 1) + S5d(ys, y2) + -+ + S_1d(yn, yn1), (1.0.50)
where .
N ={oj,...,an} (Jed{l,...,m}),
ST = s+ -+ an; (ke {1,2,...,1}),
Slz;:alj‘i‘""i‘akj (kefl,2,....0}),
0<8,<8i=1 (ke{l,2,...,0}),

e the following identities hold
!
bj =Y aiay, (j=1,...,m). (1.0.51)
i=1

We can now present the extension of Sherman’s inequality in a global NPC space (M, d), when the
weights are allowed to be nonpositive.

Theorem 1.0.17. In the hypotheses from Definition 1.0.15 let us suppose that conditions (1.0.45) are
satisfied. Then, the following inequality

m l
D aif () < bif(yy)
i=1 j=1

holds for every convex function f: M — R.

The last chapter of this doctoral thesis is devoted to some conclusions, final remarks and further
research objectives. We recall some recent results in literature which could be useful to develop the
results obtained in this doctoral thesis. We also emphasize several different directions of research as
follows: polynomial norms defined in terms of symmetric homogeneous polynomials of even degree
and some error estimates in this area; convexity properties of other symmetric polynomials; discrete
Korn inequalities, etc.



Chapter 2

New majorization results on hy
strongly convex functions

2.1 Convexity and majorization in R”

In this section, we present some notions (inspired from [68, 69, 104, 116]) related to convexity, ma-
jorization theory and inequalities associated to it. The relation of majorization was introduced by G.
H . Hardy, J. E. Littlewood and G. Pélya [69] in 1929, and was popularized by their celebrated book
on Inequalities [68]. Part of this research activity is summarized in the 900 pages of the recent book
by A. W. Marshall, I. Olkin and B. Arnold [104].

2.1.1 The Hardy-Littlewood-Pélya theory of majorization

The main problem of this subsection is to find necessary and sufficient conditions under which two
families of real numbers 1 > -+ > x,, and y; > - -+ > y, accompanied by a family (pk)’,;‘:l of positive
weights, which verify the inequality

> oef(ae) <> pef (k) (2.1.1)
k=1 k=1

for every real-valued continuous convex function f defined on an interval that contains all real numbers
of x; and yg.

This problem is related to Jensen’s inequality, which occurs in particular case where
n n
Y pp=1 and @z =--=z,=Y DPrl-
k=1 k=1
Because the identity and its opposite are continuous convex functions, we deduce that the inequality

(2.1.1) imposes the equality
n n
> pktk = Dik- (2.1.2)
k=1 k=1

21
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Furthermore, using the convexity of the functions f = (x — yx)", we obtain

n
pix+ -+ perk — (pr+ o+ PRy Z ()

<> i) Spr e+ peyk — (01 -+ DRk
j=1
which gives a new set of necessary conditions:

Zpka:k < Zpkyk forall me{l,...,n—1}. (2.1.3)
k=1 k=1

Unexpected, the conditions (2.1.2) and (2.1.3) are also sufficient for solving the problem mentioned
above, even in the case of real weights. This fact is known as Fuchs’ generalization of the Hardy-
Littlewood-Pdlya inequality of majorization and can be stated as follows:

Theorem 2.1.1. If (x)}_, and (yx)}_, are two families of real numbers directed downwards,
T1 2> > Ty and Y1 > 0 > Yn,

and (pr)k is a family of real weights which satisfy the conditions (2.1.2) and (2.1.3), then

> pef (k) < pef (), (2.1.4)
k=1 k=1

for every function f whose domain of definition is an interval that contains all numbers xy and yp.

Furthermore, in the case when the two families of real numbers (xk)r and (yr)r are directed upwards,
the inequality (2.1.4) works in the reverse direction.

Proof. Without loss of generality we may assume that zp # y; for all indices k. Then, according to
Abel’s partial summation formula [116, Theorem 2.4.5] we have

n

Zpkf k) Zpkf ) Z[ (yk_ggk)f(yk)_f(xk)]
k=1

-
1 Yk k

-5 (g S ) (- o)

el Yk4+1 — Th41

+W(Zmyi - Zm@)
nil ( Yk — T e He e ) (szyl sza;z) =Y

el Yk+1 = Th+1

due to our hypotheses (2.1.2) and (2.1.3) and the three chords inequality [116, Remark 1.4.1].

Remark that in the case where 1 < --- <z, and y; < --- < y,, the three chords inequality implies

flye) = o) flykr) = flapt)

Yk — Tk Yk+1 — Tl+1

<0,

and the proof is complete. O
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An analysis of the argument of Theorem 2.1.1, leads to the next result namely Fuchs’ generalization
of the Tomié-Weyl inequality of majorization:

Theorem 2.1.2. If (xy)}_, and (yx)}_, are two families of real numbers directed downwards,
Ty > 2Ty and Yy =0 2 Yn,

and (pr)k is a family of real weights which satisfy the inequalities

m m
Zpkxk < Zpkyk forallm e {1,...,n},
k=1 k=1

then

> pef(r) D pef (), (2.1.5)
k=1 k=1

for every convex and increasing function f whose domain of definition is an interval that contains
all numbers xy and y;.

Furthermore, in the case when the two families of real numbers (xy), and (yx)x are directed upwards,
the last inequality works in the reverse direction.

Note that Hardy, Littlewood and Pélya [68], [69] have considered only the unweighted case of their
inequalities of majorization, that is, the case where all weights equal to unity. We recall them here by
removing the unnecessary assumption on the continuity of the functions involved and noting that the
monotonicity of only one of the two families of numbers is sufficient.

Theorem 2.1.3. (The Hardy-Littlewood-Pdélya inequality of magjorization) Let f be a convex function
defined on an interval I and let x = (x)}_, and 'y = (yi)}_, be two families of numbers in I such
that

m m
ZkaZykformzl,...,n—l (2.1.6)
k=1 k=1
and
n n
Z$k = Zyk (2.1.7)
k=1 k=1
If t1 > -+ > x,, then

7 k) < fun), (2.1.8)
k=1 k=1

while if y1 < -+ < yp, then the last inequality works in the reverse direction.

Proof. When 27 > -+ > x,, and the hypotheses (2.1.6) and (2.1.7) hold, they will continue to work
when y is replaced by the vector obtained from y by rearranging its components in decreasing order
and the conclusion is a direct consequence of Theorem 2.1.1.

Taking into account the property of subdifferentiability of convex functions we can avoid the use of
Theorem 2.1.1 and for this, rearrange y as above and observe that we may assume that xj # y; for all
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k. According to the hypotheses (2.1.6) and (2.1.7), it follows that z; < y; and x, > yp, so all points
xy, are interior to I. Then by using [116, Theorem 2.1.2] we have that

n

S F ) =S Fan) = S () — Fan) = 3 ) e — )
k=1 k=1

k=1 k=1
n—1 m n
SD MUACHEFACHRI] O SEE) EWATR) BERIEES
m=1 k=1 k=1
n—1 m
= 3 htom) = om0
m=1 k=1

and the proof ends by noticing that the right derivative f/ of the convex function f is increasing on
the interior of I.

Remark that the case when y; < --- < y, can be treated in a similar way, by replacing x by the
vector obtained from it by rearranging its components in increasing order. O

An immediate consequence of Theorem 2.1.3 is as follows:

Corollary 1. (Truncated majorization) Let f : [0,00) — R be an increasing concave function and let
X1, L2y ey Ty Y1, Y2, - -, Ym (2 < < n) be nonnegative numbers such that

max{xi,...,Tn} < max{yi,...,Ym},

max{z;, + xi, : i1 # i2} < max{y;, +y;, : J1 # Jo},

k k
max{inp . #is} < maX{Zyjp S Jr 75]'3}7
p=1 p=1

for k <m and

Then

The argument of Theorem 2.1.3 yields the Tomié¢-Weyl inequality of weak majorization [167, 168]:

Theorem 2.1.4. Let f be a convex and increasing function defined on an interval I and let x = (x)p_,
and 'y = (yi)i_, be two families of numbers in I such that

m m
kaSZykformzl,...,n
k=1 k=1
If t1 > -+ > x,, then
fok S ( k)

while if y1 < --- <y, then the last mequalzty work:s mn the reverse direction.
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Now we are in a position to indicate the precise definition of the notion of majorization.

Given a vector x = (z1,...,,) € R, we denote by x+ = (:L'%, .. ,:L'ﬁ) the vector obtained from x by

rearranging its components in decreasing order,
1 1
xy = 2 Xy

1
1

In a similar way we may introduce the vector x' = (z,... ,a:,t), obtained from x by rearranging its

components in increasing order.

Definition 2.1.1. Given two vectors x andy in R™, we say that x is weakly majorized by y (denoted
X <gLPwy) if

k
Z$%§Zyi¢f0rk‘:1,...,n,

and that x is magjorized by y (denoted x <grpy) if in addition
n n
L !
2T =D Y
i=1 i=1

When considering the similar relations for vectors rearranged in increasing order, one obtains respec-
tively the corresponding relations denoted X <31 p, ¥ ond X <y;p y-

Notice that <prp provides a partial order on R™ and the initial order of the components in the
vectors does not play any role in terms of majorization. As it will be shown in Theorem 2.1.7, the fact
that x <y p y means geometrically that the components of x spread out less than those of y.

In information theory, the relation p <grp q (for p and q probability distributions on N outcomes)
implies that p is more disordered than q. Indeed, according to Theorem 2.1.3, we have

n n
H(p) =—> prlogypr > H(q) = — ) _ qilog, i,
k=1 k=1

that is, the Shannon entropy of q does not exceed the Shannon entropy of p. Since the converse does
not work (that is, in general the inequality H(p) > H(q) does not imply p <grp q), this suggests
that the majorization theory could offer stronger criteria for measurement of disorder in a system than
the entropic inequalities. Indeed, this is the case, and the details can be found in the survey of M. A.
Nielsen [129] and the monograph of M. A. Nielsen and I. L. Chuang [130].

Remark 5. The fact that the Tomicé-Weyl inequality of weak majorization was obtained as a conse-
quence of the Hardy-Littlewood-Pdlya inequality of majorization is not an accident. Indeed, as was
noticed by G. Pdlya [141], if

(1,...,2n) <HLPw (Y15 Un)s

then there exist real numbers xn4+1 and yn41 such that

(wla <oy In, $n+1) =<HLP (yla s 7yn>yn+1)‘

To check this, choose

n+1 n
Tpt1 = min{xy, ..., Tn,y1,...,Yn} and ypy1 = Zxk - Zyk.
k=1 k=1
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W. Arveson and R. Kadison have found another reduction of weak majorization to majorization. Let
1> - >x, and yp > - >y, be two decreasing sequences of positive real numbers such that

T+ Fap <4y fork=1,... n

Then there is a decreasing sequence y; > --- > ¥,, such that 0 <7, <y for all k£ and

(xlv s 7‘TTL) <HLP (ylv s 7?71)

The aforementioned book [68] of Hardy, Littlewood and Pélya also includes a description of the
relation of majorization by averaging means, based on the doubly stochastic matrices. Recall that a
matrix A € M, (R) is doubly stochastic if A has positive entries and each row and each column sums
to unity. A special class of doubly stochastic matrices is that of T-transformations which have the
form

T=M+(1-X)Q,
where 0 < A < 1 and @ is a permutation mapping which interchanges two coordinates, that is,
Tz = (xlv sy Lj—1, )‘xj + (1 - )‘)xk>mj+la ey Th—1, ATE + (1 - )\)J/’j,l‘k+1, s 7xn)‘

Theorem 2.1.5. If x,y € R", then the following statements are equivalent:

(i) X <HLPY;
(11) x = Ay for a suitable doubly stochastic matriz A € My (R);

(#i7) x can be obtained from'y by successive applications of finitely many T-transformations.

Remark that the implication (ii) = (4) is due to I. Schur [157] and constituted the starting point for
this theorem.

Proof. (iii) = (4i) Since T-transformations are doubly stochastic, the product of T-transformations
is a doubly stochastic transformation.

(¢4) = (i) This implication is a consequence of Theorem 2.1.3. Assume that A = (a;x)};_; and
consider an arbitrary continuous convex function f defined on an interval including the components
of x and y. Since zp =) ; Yiajk, and > ;j ajk = 1 for all indices k, it follows from Jensen’s inequality
that

Flae) < ajnf(yy).

=1

kif(xzc) < :1 (jzn;ajkf(?/i)> = i (i%kf(%)) = fw),

Then

and Theorem 2.1.3 applies.

(i) = (i7i) Let x and y be two distinct vectors in R™ such that x <gyrp y. Since permutations are
T-transformations, we may assume that their components verify the conditions

r1 > >xpand yp > - >y,
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Let j be the largest index such that z; < y; and let k be the smallest index such that £ > j and
xr > yr- The existence of such a pair of indices is motivated by the fact that the largest index ¢ with
x; # y; verifies x; > y;. Then

Yj > Tj 2 T > Y.

Put
€

Yji — Yk

e =min{y; —xj, x5 — Y}, A=1—

and
y>‘< = (y17 e Yi—1,Y5 — €Y1, - Yk—1, Yk + € Yk+1s--- 73/n)

Clearly, A € (0,1). Denoting by @ the permutation matrix which interchanges the components of
order j and k, we see that y* = T'y for the representation

T =X+ (1-))Q.

According to the implication (ii) = (i), it follows that y* <grp y. On the other hand, x <grp y*.

In fact,
S S S
Zy::ZyrZZxr fors=1,...,5—1,
r=1 r=1 r=1
y; >zjand y, =y, forr=j+1,..., k-1,
S S S
Zy;‘:ZyTZZxT fors=k+1,...,n
r=1 r=1 r=1

and

n n n
Dyr=Y p=> =
r=1 r=1 r=1

Letting d(u, v) be the number of indices  such that u, # v,, it is clear that d(x,y*) < d(x,y) — 1, so
by repeating the above algorithm (at most) n — 1 times, we arrive at x. O

The Hardy-Lttlewood-Pdélya inequality of majorization admits a generalization due to S. Sherman
[160] to the case where the vectors x and y are not necessarily in the same vector space. For functions
defined on intervals it reduces to the following result.

Theorem 2.1.6. Suppose that I is an interval of R and consider the vectors a = (a1, ...,am,) € RT,
b= (by,...,by) €R}, x=(21,...,20) €EI™ andy = (y1,...,yn) € I". Then

D bif(yi) <D aif(y),
i=1 j=1

for every convex function f : I — R if and only if there exists an n x m dimensional matriz S = (s45)i
with positive entries such that
y=5%x, a=5"b

and
m

Z sij = 1 for every i.

=1
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An elegant proof of this result has been presented by G. Bennett [23], Lemma 6.1, p. 894. The next
two results need some preparation concerning the action of the permutation group on the Euclidian
space.

The permutation group of order n is the group II(n) of all bijective functions from {1,...,n} onto
itself. This group acts on R™ via the map ¥ : II(n) x R™ — R, defined by the formula

U(m,x) = 7X = (Tr(1) -+ Tr(n))-

The orbits of this action, that is, the sets of the form O(z) = {mx : # € II(n)}, play an important
role in majorization theory.

Definition 2.1.2. A subset C of R™ is called invariant under permutations (or IL(n)-invariant) if
mx € C whenever m € II(n) and x € C. Therefore, a function F' defined on a II(n)-invariant subset C
is called TI(n)-invariant (or invariant under permutations) if F(nx) = F(x) whenever m € II(n) and
xeC.

Note that all elementary symmetric functions (as well as all norms of index p € [1, c0]) are invariant
under permutations. Furthermore, to every convex function ¢ : R® — R one can attach a convex
function ¢ : R” — R invariant under permutations via the formula

prn(x) = Y ¢(rx).
well(n)

A geometric insight into majorization was revealed by R. Rado, who noticed that x <yrp y means
that the components of x spread out less than those of y in the sense that x lies in the convex hull of
the n! permutations of y.

Theorem 2.1.7. (R. Rado [146]) x <grp y € R™ if and olny if x belongs to the convex hull of the
n! permutations of y. Therefore, we have

{x:x<pgrpy} = conv{ry : m €Il(n)}.

Proof. According to Theorem 2.1.5, if x <pgrp y, then x = Ay for some doubly stochastic matrix.
Taking into account Birkhoff’s theorem, A can be represented as a convex combination A =) A A
of the n! permutation matrices A,. Then we have

X = ArAr(y) € conv{Ar(y) : 7 € I(n)}.

Conversely, if x € conv{A;(y) : # € II(n)}, then x admits a convex representation of the form
x =) AAz(y), whence x = (DA Az)(y). O

Remarkably, the relation of majorization gives rise to inequalities of the type (2.1.8) not only for the
continuous convex functions of the form

F(xy,...,zp) = Zf(ka),
k=1

but also for all quasiconvex functions F'(x1,...,z,) which are invariant under the action of the per-
mutation group.
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Theorem 2.1.8. (1. Schur [157]) If C is a convez set in R™ invariant under permutations and F :
C — R is a quasiconvex function invariant under permutations, then

x<pgrLpy implies F(x) < F(y).

Proof. Indeed, according to Theorem 2.1.7, we have
F(x) <sup{F(u):u € conv{rny : m € II(n)}}

= sup{F(ry) : 7 € H(n)} = F(y).
]

Two simple examples of quasiconvex functions invariant under permutations that are not convex are

n « ... «
log<2xk> and S M o for > 0 and z1,...,2z, > 0.

’i’l"r‘ .--x
k—1 1 n

For more examples, notice that if f and g are two functions defined on a convex set C' C R™ such that
f is positive and convex and g is strictly positive and concave, then f/g is quasiconvex.

An illustration of Theorem 2.1.8 is offered by the following result due to R. F. Muirhead [109]:

Theorem 2.1.9. (Muirhead’s inequality) If x andy are two vectors in R™ such that x <grpy and
Qai, ..., 0 are strictly positive numbers, then

L Tn Y Yn
> V() Yaln) S > Qr1) -+ ()’ (2.1.9)
well(n) nell(n)
the sum being taken over all permutations m of the set {1,...,n}.

Actually, Muirhead has considered only the case where x and y have positive integer components.
The extension to the case of real components is due to G. H. Hardy, J. E. Littlewood and G. Pdlya
[68].

Proof. Put w = (logay,...,logay,). Then we have to prove that

Z e(x,ww)g Z e(y,ww>.

well(n) well(n)
This follows from Theorem 2.1.8 because the function u — Zweﬂ(n) ew ™) is convex and invariant
under permutations. O
The converse of Theorem 2.1.9 also works: If the inequality (2.1.9) is valid for all ag,...,a, > 0,
then x <grp y. Indeed, the case where a; = --- = a,, > 0 gives us

n n
alzkzl Tk < alzkzl yk7

so that

n n
Dok = >y
k=1 k=1
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since o > 0 is arbitrary. Denote by P the set of all subsets of {1,...,n} of size k and take oy = --- =
ar > 1 and agy; =+ = a, = 1. By our hypotheses,

Z QlZiesfm < Z a?ies vi.

SeP SeP

If Z?:l mj > Z;?:l yj, this leads to a contradiction for oy large enough. Thus x <grp y.

2.1.2 Several applications to linear algebra

A well known result in linear algebra states that the trace of a matrix equals the sum of its eigenvalues.
What more can be said about the possible diagonal entries of the real symmetric matrices having a
fixed set of eigenvalues? The answer to this problem is given by the Schur-Horn theorem:

Theorem 2.1.10. Suppose that
d=(di,...,dp) and A= (A1,..., \n)
are two vectors in R™. Then there is a real symmetric matriz with diagonal entries di,...,d, and

etgenvalues A1, ..., A\p if and only if d <grp A.

Schur’s contribution was the striking remark concerning the implication of majorization to this mat-
ter.

Lemma 2.1.1. (I. Schur [157]) Let B € M,(R) be a self-adjoint matriz with diagonal elements
b11,...,bun and eigenvalues A1, ..., \,. Then

(0115 bpn) <HLP (M1, -5 An).

Proof. Using the spectral decomposition theorem, B = UDU*, where U = (uy;), ; is orthogonal and
D is diagonal, with diagonal entries A1,...,A,. The diagonal elements of B are

n n
brk = (Ber,ex) = Niug; = Y agjh,
Jj=1 Jj=1

where ay; = u% ;i as usually, e1,...,e, denote the natural basis of R™. Since U is orthogonal, the
matrix A = (ay;)k,; is doubly stochastic and Theorem 2.1.5 applies. OJ

Since the function log is concave, from Theorem 2.1.3 and Lemma 2.1.1 we infer the following in-
equality:

Corollary 2. (Hadamard’s determinant inequality) If B is an n x n-dimensional positive matrix with
diagonal elements by1,...,bnn and eigenvalues A1, ..., A\, then

H bk > H Ak
k=1 k=1

A. Horn [71] has proved a converse to Lemma 2.1.1, which led to the statement of Theorem 2.1.10:
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Lemma 2.1.2. Ifx andy are two vectors in R™ such that x <grp 'y, then there exists a symmetric
matriz B such that the entries of x are the diagonal elements of B and the entries of y are the
etgenvalues of B.

Proof. We follow here the argument of W. Arveson and R. Kadison [13].

Step 1: If B = (bsj)i; € M,(R) is a symmetric matrix with diagonal d, then for every T-transform
T there exists a unitary matrix U such that UBU* has diagonal 7'd.

Indeed, suppose that
T = (1 —cos?0)I + (sin” ) Py,
where 7 is a permutation that interchanges igp and jo. Then the matrix U = (u;j); ;, obtained by
modifying four entries of the identity matrix as follows,
Uipig = 7 sin 9, WUigj0 = — COS (9,
Ujpip = 1 €080,  jyj, = sind,
is unitary and a straightforward computation shows that the diagonal of UBU™ is equal to (1 —

cos? 0)d + (sin? 0) Py (d).

Step 2: Let A = Diag(y). By Theorem 2.1.5, x can be obtained from y by successive applications of
finitely many T-transformations,
X = Tme_l te le.
By Step 1, there is a unitary matrix U; such that Uj AU has diagonal T7y. Similarly, there is a
unitary matrix Uy such that Us (U AUY)Us has diagonal T>(T1y). Iterating this argument, we obtain
a self-adjoint matrix
B = UnUpn-1---U)ANUUpp—1 ---Up)*

whose diagonal elements are the entries of x and the eigenvalues are the entries of y. O

2.1.3 The Schur-convexity property

Taking into account the Theorem 2.1.8, the quasiconvex functions f : R™ — R invariant under per-
mutations are isotonic with respect to the relation of majorization, that is,

x <grpy implies f(x) < f(y). (2.1.10)

The implication (2.1.10) holds true beyond the framework of quasiconvex functions invariant under
permutations. Simple examples such as f(z1,22) = —z122 on R? can justify this implication. This
led I. Schur [157] to initiate a systematic study of the functions that verify the property (2.1.10).

Definition 2.1.3. A function f : C — R defined on a set invariant under permutations is called
Schur-convex if

x <prpy implies f(x) < f(y).
If in addition f(x) < f(y) whenever x <grpy but x is not a permutation of y, then f is said to be
strictly Schur-conver.

We call the function f (strictly) Schur-concave if —f is (strictly) Schur-convez.
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Every Schur-convex function defined on a set C invariant under permutations is a function invariant
under permutations. This is a consequence of the fact that x <grp Pr(x) and Pr(x) <pgrp x for
every vector x € R" and every permutation matrix P, € M, (R).

The Schur-convex functions contain a large variety of examples such as:

Example 1. If J : R" — R is a function (strictly) increasing in each variable and fi,..., fn are
(strictly) Schur-convex functions on R™, then the function j(x) = J(f1(X),..., fn(X)) is (strictly)
Schur-convex on R™. Some particular examples of strictly Schur-convex functions are:

n
max{xi,..., Ty} and log (ZJE%) on R™;

k=1
n
- H xp on (0,00)".
k=1

Theorem 2.1.11. (The Schur-Ostrowski criterion of Schur-converity) Let I be a nonempty open
interval. A differentiable function f : I" — R is Schur-convex if and only if it fulfils the following two
conditions:

(1) f is invariant under permutations;

(13) for everyx € I"™ and i,5 € {1,...,n} we have

<a—w(i§@—§9m>zo

Proof. Necessity. For (i), see the comments after Definition 2.1.3. This reduces the verification of (i)
to the case where ¢ = 1 and j = 2. Fix arbitrarily x € I" and choose € > 0 sufficiently small such that

x(t) = (1 = t)xy + tag, tey + (1 — t)xe, 23, ...,2,) € D, (2.1.11)
for t € (0,¢]. Then x(t) <mgrLp x, which yields f(x(t)) < f(x). Therefore
fx@#) = f(x) _ df(x(?)) of of )

> i = (g1 — 2y = 2L
02 150 t dt |, (@1 x2)<8x1 x 0xo x

Sufficiency. We have to prove that y <grp x implies f(y) < f(x). According to Theorem 2.1.5, it
suffices to consider the case where

vy =(1—s)z1 + sxa,sx1 + (1 — s)z2,23,...,%n),
for some s € [0, 3]. Consider z(t) as in formula (2.1.11). Then

F) = 1) = [ 5 px(o)a

o /08(5”1 ) (gi(x(t)) - ggg;(X(t)))dt

[ prx(t) — prax(t) (0 o1
—— [ (O ) - L ) )

where pri denotes the projection to the k-th coordinate. According to condition (i7), f(y)— f(x) <0,
and the proof is complete. O

(x(t
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The elementary symmetric functions of n variables are defined by the formulas

eo(x1,22,...,2n) = 1,

e1(x1, 29, ..., xp) =21 + 22+ -+ + T,

ep(T1, 22, ..., Tpn) = E Tiy - - T
1<i1<-<ip<n

en(T1,x9,...,Tp) = T1T2 - Tpy.

Clearly, they are invariant under permutations. A small computation shows that

0 ~
axiek(:z:l, ces@p) = €k—1(T1y .oy Tiy oo, Ty)
and
0 0 ~ ~
%ek($1, e ,iCn) — %jek(.%'l, . ,xn) = —(xi — xj)ek_g(:cl,. ey Ly . .,I’j, e ,:L‘n),

where the cup indicates the omission of the coordinate underneath. This leads us to the following
consequence of Theorem 2.1.11:

Corollary 3. (I. Schur) All elementary symmetric

er(T1, o, ..., Tp)

of n variables are Schur-concave on R'}.

Since

<HLP (:Ul, . ,xn),

T R R R N SRR PP REY

for every (z1,...,2,) € R}, we infer from Corollary 3 that
n\f(fry+---+2a, F
er(1, 22, ..., 2n) = | Z wllxlkg(/@)(m) ’
1<ip <-<ix<n
for k = n we retrieve the AM-GM inequality.

Remark 6. The relation of majorization is closely related to the duality of cones, more precisely, to
the fact that the dual cone of the monotone cone

RY = {(21,...,2n) €ER" 121 > --- > 1}

is the cone

m n
(RL)* = {yER”:ZykZOformzl,...,n1, and Zyk:O}.
k=1 k=1

Indeed, if x,y € RY, then

x <grpy if and only if y —x € (RL)".
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This leads to the more general concept of majorization with respect to a convex cone C' in a real vector
space V,
x=<cy if and only if y—x e C*,

and, implicitly, to a generalization of Schur convexity. In the case of self-dual cones C (like RY} and
Sym™(n,R)), the corresponding concept of Schur convexity coincides with that of a function which is
monotone increasing on C.

2.1.4 On vector majorization in R"

The usual relation of majorization, described in Section 2.1.1 as a relation between strings of real
numbers can be easily generalized as a relation between strings of weighted vectors in R™. This was
done by S. Sherman [160], inspired by the equivalence of conditions (i) and (ii) in Theorem 2.1.5.

Definition 2.1.4. The relation of majorization
(Xl, e X AL, e )\m) < Sh (yl, ey Y M1, ,,U,n) (2.1.12)

between two strings of weighted points in R™ is defined by asking the existence of an m X n-dimensional
matriz A = (a;j)i; such that

a;j >0 for (i,7) € {1,...,m} x {1,...,n}, (2.1.13)
n
Y aij=1fori=1,...,m, (2.1.14)
j=1
m
i =Y aghi forj=1,...n, (2.1.15)
=1
and .
xi =Y _ayy; fori=1,...,m. (2.1.16)
j=1

We assume that all weights A\; and p; belong to [0, 1] and

n

=1 j=1

The matrices verifying the conditions (2.1.13) and (2.1.14) are called stochastic on rows. When m =n
and all weights A\; and p; are equal to each other, then the condition (2.1.15) assures the stochasticity
on columns, so in that case we deal with doubly stochastic matrices.

Remark 7. The relation of majorization introduced by Definition 2.1.4 can be restated as a relation
between probability measures, letting

m n
Z )\2511 —<Sh Z /’Ljéyj7
i=1 j=1
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if the conditions (2.1.13) - (2.1.16) hold. In this context, the condition (2.1.16) means that

n
T = bar(Zaijéyj> fori=1,...,m,
j=1

a fact that allows easily to define the relation of majorization between probability measures not only in
R™, but also in any space where the notion of barycenter of a probability measure makes sense. Notice
also that the conditions (2.1.14) and (2.1.16) imply that

X1,y Xm € cOnV{Y1,...,Yn}-
The following theorem provides a large extension of the Hardy-Littlewood-Pdélya inequality of ma-
jorization:
Theorem 2.1.12. (8. Sherman [160]) Suppose that 3"y Nidy, and 327 150y, are two Borel proba-
bility measures on R™. Then the following assertions are equivalent:
(1) D231 Aibz, <sh Doj—q Hjly,;

(11) X1,...,Xm € conv{y1,...,yn} and every continuous convex functions f defined on conv{y1,...,yn}
(or to a larger convex subset of R™) verifies the inequality

SN xi) < uiflyy).
i=1 j=1

2.1.5 Convex type inequalities
We present a first example describes how convex functions relate the arithmetic means of the subfam-
ilies of a given triplet of numbers.

Theorem 2.1.13. (Popoviciu’s inequality [144]) If f : I — R is a continuous function, then f is
convez if and only if

f(x)+ fy)+ f(2) +f(x+y—|—z> - 2{f<m+y> +f<y+z> +f<z—|—:n)]’

3 3 =3 2 2 2

for all x,y,z € I. In the variant of strictly convex functions, the above inequality is strict except for
T=y ==z

Proof. Necessity. This part does not make use of the continuity of f. It suffices to consider the case
where f is the absolute value function, that is, to show that

lz| + [yl + |zl + |z +y+ 2| > |z +yl+ |y + 2| + |z + 2], (2.1.17)
for all x,y,z € I. This is an immediate consequence of the order properties of real numbers.

A second approach, based on the polynomial identity,

Pyt (@t y )’ = @y (y+2)? (2 a)
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has the advantage to extend to the framework of Euclidian spaces. Indeed,
(Il + [yl + [zl + [z +y + 2] = [z +y| = [y + 2] — |z + 2]) X (|2] + [y| + 2] + [z + y + 2])
= (lzl + 1yl = lz +yD (2l + lz +y + 2[ = [z + yl)
+(yl + 12l = ly + 2D (=] + o +y + 2] — |y + 2])
+(lz[ + |z = |z + 2[)(Jjy| + |z + y + 2| = [z + z]) 2 0,
and the necessity part is done.

Sufficiency. Popoviciu’s inequality when applied for y = z, yields the following substitute for the
condition of midpoint convexity:

1 3. [x+2y T+y
— — > .
4f(:c)+4f< 3 )_f( 5 ) forall z,yel

O

Theorem 2.1.14. (Abel’s partial summation formula) If (ar)p_, and (by)}_, are two families of

complex numbers, then
n
‘a, (Z bj> .
j=1

n n—1 k

IRUSS ol ] oy
k=1 k=1 j=1

Corollary 4. (The Abel-Steffensen inequality [162]) If x1,...,xn and y1,...,Yyn are two families of

real numbers that verify one of the following two conditions

(i) z1>--->xp, >0 and ZizlykZOforalle{l,Q,...,n},

(1) 0<a1 <+ <xpand Y2 yp <0 forall j € {1,2,...,n},

then .

Z Yk 2> 0.

k=1
Therefore, if x1,..., Ty s a monotonic family and yi,...,yn is a family of real numbers such that

7 n
0<> <> uk,

k=1 k=1

for j=1,...,n, then we have

n n n
min x < x < max I .
(1§k§n k) ;yk = ; EYk = <1§k§n k) ;yk

Another result whose proof can be considerably simplified by the piecewise linear approximation of
convex functions in the following generalization of Jensen’s inequality, due to J. F. Steffensen [162].
Unlike Jensen’s inequality, it allows the use of negative weights.
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Theorem 2.1.15. (The Jensen-Steffensen inequality) Suppose that 1, ...,z is a monotonic family
of points in an interval [a,b] and w1, ..., w, are real weights such that

n m n
Zwk =1and 0 < Zwk < Zwk,
k=1 k=1 k=1

for every m € {1,...,n}.
Then every convex function f defined on [a,b] verifies the inequality

f<;wk$k> < gwkf(xk)~

Proof. We may reduce ourselves to the case of absolute value function. Assuming the ordering z; <
-+« < m,, we infer that

ogxfg---gx; and xy > --- >z, >0
According to Corollary 4,
n n
Zwkxk >0 and Zwkx; >0
k=1 k=1
which yields
n n
> wpak| <) wplwg|
k=1 k=1
and the proof is complete. O

The integral version of Jensen-Steffensen inequality can be established in the same manner, using
integration by part instead of Abel’s partial summation formula.

Theorem 2.1.16. (The integral version of Jensen-Steffensen inequality) Suppose that g : [a,b] — R
is a monotone function and w : [a,b] — R is an integrable function such that

T b
0< / w(t)dt < / w(t)dt =1 for every x € [a,b].

Then every convex function f defined on an interval I that includes the range of g verifies the inequality

b b
f( / g<t>w<t>dt> < [ e

Another application of Abel’s partial summation formula is as follows.

Theorem 2.1.17. (The discrete form of Hardy-Littlewood rearrangement inequality [68]) Let x1, ..., Tp, Y1, .- .

be real numbers. Then
n n n
S apyn pa <> mye <Y Tyl
k=1 k=1 k=1
where 3:% > > x% denotes the decreasing rearrangement of a family x1,...,x, of real numbers.

Proof. Notice first that we may assume that 1 > --- > x,, > 0. Then, apply Abel’s partial summation
formula. O

»Yn
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2.2 New versions of uniformly convex functions via quadratic com-
plete homogeneous symmetric polynomials

In this section, we introduce new versions of uniformly convex functions, namely h, strongly (weaker)
convex functions. Based on the positivity of complete homogeneous symmetric polynomials with even
degree, recently studied in [153, 165], we introduce stronger and weaker versions of uniformly convexity.
In this context, we recover well-known type inequalities such as: Jensen’s, Hardy-Littlewood-Polya’s
and Popoviciu’s inequalities. Some final remarks related to Sherman’s and Ingham’s type inequalities
are also discussed.

The topic we address in this section of the thesis is related to the study of a new family of convex
functions which is based on the positivity property of complete homogeneous symmetric polynomials
with even degree. The study of the positivity of symmetric polynomial functions goes back to an
old paper of Hunter [74], where a tricky argument is proposed. Afterwards, in [165] was considered
a genuinely different way to establish the positivity of such polynomials. Moreover, two different
ideas are presented in [153], one of them being based on a Schur-convexity argument and the other
one following a method with divided differences. Fine estimates on the norms on complex matrices
induced by complete homogeneous symmetric polynomials are obtained in [4] and [37].

The family of complete homogeneous symmetric polynomials with n variables x1,...,z, and degree
d € N is defined as follows
ho(.ﬁlfl, PN ,mn) = 1,

ha(xi, ..., 2p) = Z Tiy - Ty (d=>1).

1<i1 <<ig<n

A key strategy to prove the positivity of hg, for all even degrees d > 2, consists of using Schur-
convexity and majorization techniques. The concept of majorization lies in the core of a powerful
topic of research with interesting recent results. In this regard, we just enumerate few of them: a
necessary and sufficient condition for a linear map to preserve group majorizations can be found
in [131]; new majorization results are studied in [83, 132]; interesting properties on superquadratic
functions related to Jensen—Steffensen’s inequality are obtained in [1]. All these ideas are also based on
the theory of uniformly convex functions, which in addition gives the possibility to define the concept
of majorization into the spaces of curved geometry (see [126]). More results on this topic can be found
in [112, 113, 114, 117, 124].

In order to present the current settings we address in this section, let us introduce the above mentioned
concepts of stronger and weaker hy convexity for functions defined on R".

The key point to introduce this new versions of uniformly convexity is based on a positivity result
given in [153], which asserts that: if d > 2 is an even natural index, then

ha(z1,22,...,2y) >0 (z1,...,7y, €R). (2.2.1)

Based on (2.2.1) we define a new class of convex functions by considering a perturbation of convex
functions with complete homogeneous symmetric polynomials.
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Definition 2.2.1. Let C > 0 and let d > 2 be an even natural number. A function f : R"™ — R
is said to be hg strongly convex with modulus C if the function f(-) — C hq(+) is convex. Similarly, a
function f: R™ — R is called hy weakly convex with modulus C' if the function f(-)+C hg(-) is convex.

The above definition is inspired from the notion w-m-star convex function (see, for instance, [96]).
In order to motivate the concept of ho strongly/weakly convex function we first recall the notion of
uniformly convex function.

Definition 2.2.2. Let C' > 0. A function f : R™ — R is said to be uniformly conver with modulus
Cif f(-) = C ||-||* is convex. Equivalently, the function f is uniformly convex with modulus C if and
only if the following inequality holds

FIL=Nx+2Ay) < (1 =N f(x) +Af(y) = CA(L = A) [Ix — I, (2.2.2)

for all x,y € R™ and X € [0,1].

A first objective of this section consists in showing that (2.2.2) holds similarly, even in the context
of hg strongly convexity (see Proposition 2.2.1).

We simply remark that, based on the following estimate
1 n+1 N
5 2[|* < ho(w) < TIISEII2 (z € R", n € NY),

we have, in general, the equivalence between the concepts of uniformly convexity and hg strongly
convexity. But, in particular, going deeply to the modulus, we cannot prove the existence of two
positive constants C7; and Cy such that: a function is ho strongly convex with modulus C; if and
only if it is uniformly convex with modulus Cs. In this sense, other related remarks and examples are
given in Proposition 2.2.2. On the other hand, we prove that Jensen’s, Hardy-Littlewood-Polya’s and
Popoviciu’s inequalities for ho strongly convex functions produce different constants in the error right
hand term (comparing with the ones obtained in the case of uniformly convex functions).

A second objective of this section consists in studying the general and difficult case, i.e. hg strongly
convexity, for any even natural number d > 4. We show that (2.2.2) can be also extended in this very
general case (see Theorem 2.2.1). We use fine estimates and computations in order to get hy versions
of Jensen’s, Hardy-Littlewood-Polya’s and Popoviciu’s inequalities. Other classical inequalities are
also obtained in this section (see Theorem 2.2.2; but also Proposition 2.2.3 - Proposition 2.2.10). This
confirm that the family of hg strongly convex functions lead to new ideas of further research.

We strongly consider that the new concept and results presented in this section can be used to
establish connections and further applications related to other important scientific achievements in
literature (see [2, 3, 15, 96, 133, 169]), as we have shortly explained in the final subsection of this
section. The motivation of studying such functions is successfully accomplished by Jensen’s, Hardy-
Littlewood-Polya’s and Popoviciu’s inequalities in a very general case.

It is worth mentioning that even if hy polynomials cannot induce a norm (for example, in majorization
settings, we have that for any two vectors satisfying x < y, ha(y) > ho(x) + ha(y — z), see Lemma
2.2.1) similar results (as in the uniform convexity settings) can be obtained. An interesting approach
related to this idea was given in [135], for the case of strongly convexity and hence, further research
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can be now done in our settings. This is why we compare our results, all along the section, with the
ones obtained for classical strongly convexity.

The rest of the section is organised as follows: In Subsection 2.2.1 we present our main results,
starting with the case of hy strongly convex functions, where we deduce similar estimates as the ones
for uniformly convex functions (Jensen’s type inequalities). The rest of the section is devoted to the
hq strongly convex functions: Theorem 2.2.1 represents a fundamental result which confirm that the
family of hg strongly convex functions have a nice behaviour, even in the general case. Majorization
properties gluing together with hy strongly Schur convex functions are revealed in Subsection 2.2.2,
where Hardy-Littlewood-Polya’s and Popoviciu’s type inequalities are obtained. The last subsection is
devoted to some final remarks related to Sherman’s inequalities for w-m star convex functions. Further
consequences on Ingham’s type inequalities in control theory are also discussed.

2.2.1 New results on hy strongly convex functions

In this subsection we present important results concerning hg strongly convex functions, where d > 2
is any even natural number. Despite the main result of this subsection presented in Theorem 2.2.1 we
deduce other interesting consequences which confirm the relevance of hg strongly convexity.

Firstly, we present a surprisingly property of hs strongly convex functions which consists of an
inequality similar to (2.2.2).

Proposition 2.2.1. Let C' > 0. Then, the function f : R™ — R is ho strongly convex with modulus C
if and only if

FL = N)x 4+ Ay)) < (1= N F(x) + AF(y) = CAL = Ahs(x — ). (2.2.3)
for all x,y € R"™ and X € [0,1].

Proof. Let x,y € R™ and X € [0, 1]. Taking into account the identity

2 2
ho(xy,...,zn) =af + -+ 2z, + E x5,
1<i<j<n

the property that f(-) — C ha(+) is convex can be expressed as

(L= Nx+Ay) - CZ (L= Nz +Mi)” = C > (1= N+ d) (1= Nz + Myj)
=1 1<z<]<n

SA-NFE) M) —Ca-N Y22+ Y oz | —ox [ Y Y wy
=1

1<i<j<n i=1 1<i<j<n
Based on the fact that

n

DA =Nzi+ )+ Y (1= N+ i) (1= Nz + Ayy)

i=1 1<i<j<n

Zx+ Yoo =aDoui+ D v

1<i<j<n i=1 1<i<j<n
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n

=V =N [ D@i—w)+ DY (@mi—v)w—y)

i=1 1<i<j<n
= (A = Mha(x —y),

we obtain
ha((1 = X)x +Ay) = (1 = Aha(x) = Aha(y) = ha(x — y)(A* = V).

Hence, the proof of (2.2.3) is complete. O

In order to emphasize the difference between the notions of uniformly convexity and strongly hy
convexity we present the case of very particular family of polynomial functions.

Proposition 2.2.2. Let f: R3 = R be a function defined as

f(:v,y,z):gx2+ay2+%z2+(a—a)xz+b (a,b,a € R).

Then, for any a € (0,00) and b € R there exists C > 0 and « > 0 such that f is he strongly convex
with modulus C'. Futhermore, for any € > 0 there exist a,b, o such that f is not uniformly convex with
modulus €.

Proof. The Hessian matrix for the function f is given by

a 0 a—«
Hy = 0 2a 0
a—a 0 a

Notice that, for any a > 0 there exist C' > 0 and « € R such that the Hessian matrix corresponding
to the function g(-) = f(-) — Cha(-) is positive definite, and therefore g is convex. More precisely, we

have
a—2C -C a—oa—C
H, = -C 2a - 2C -C ;
a—a—-C -C a—2C

and thus, for n > 4, let C'= 57 a and let a = "TflC = Q’lerlla in order to fulfill the desired property

for Hy, i.e. det(H,) = % (n? —3n —3) > 0 (other two diagonal determinants of order 1 and 2 are
also strictly positive).

On the other hand, the Hessian matrix of the function gunif(-) = f(-) — ]| - ||* is given by

a— 2e 0 a— o
0 2a — 2¢ 0
a— o 0 a— 2¢

Hy

unif ~

In this case, we get
det(Hy,,,) = 2(a —¢) ((a — 2¢)* = (a —a)?),

which is strictly negative for all € > 0, a > o and o = “=Le (or a = 0). O

In the general case, for any even natural number d > 2, we get a natural but powerful extension of
Proposition 2.2.1.
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Theorem 2.2.1. Let C' > 0 and let d > 2 be an even natural number. Then, the function f: R™ — R
18 hq strongly convexr with modulus C' > 0 if and only if

I = Vx4 Ay)) < (1= N F() +Af(y) = CA2(1 = N2 ha(x — y), (2:2.4)
for all x,y € R™ and X € [0, 1].
Moreover, for each x,y € R"™ and X € [0, 1] we have

ha((1 = Nx +Ay) = (1= Nha(x) = Mra(y) < ~AF(1 = 23 ha(x ). (2.2.5)

Proof. Notice that the case d = 2 and n > 1 is already proved in Proposition 2.2.1. Our proof strategy
is based on an induction argument with respect to the even natural number d > 2, but also with
respect to the number of variables n > 1. For the convenience of the reader, we take into account
firstly the case d = 4. We consider this case in order to be confident on the mathematical induction
argument.

Thus, by using Definition 2.2.1 for d = 4 we have to prove that for all z,y € R" and A € [0,1] we

have
ha((1 = Nx + Ay) = (1= Nha(x) = Maly) < =N(1 = 2)?ha(x — ). (2.2.6)

Firstly, we consider the case n = 1. In this particular case, for each z,y € R and X € [0,1], (2.2.6)

becomes
(1 =Nz + M) < (1 =Nzt + Mt =221 = N2z —y)t (2.2.7)

The above inequality is a consequence of the following computations
(A=Nz+ )" = (1 =Nzt = ayt = (1 - N = (1= X)) z* +4(1 = N)*A2Py
+6(1 — A2\ + 4(1 — M)A 3zy® + (A = \) ¢
=4N1 = N2 (y — 2) + 4031 = NP (z — y)
AL =N (BL-N2= (1= —1) 2 + 6331 - N2 + A1 - A) (3N = A —1)y*

= A1 =N (@ —y)? (=22 +3X = 3)2% + (2A? = 2X — 2)ay — (A + A + 1)y?)
= N1 =Mz —y)*

“AM1 = A)(z = y)? ((2A% — 4N+ 3)2® + 2(=20% + 2\ + L)zy + (2A% + 1)y°)
< =N (1= M2z —y)

where for the last inequality we have used that

(202 — 4N+ 3)22 + 2(—2X2 4 20+ Day + N2+ 12 >0 (z,y €R, A €[0,1]).

Secondly, for n > 2, let us consider x = (x1,...,2,), ¥ = (Y1,...,Yn) in R” and X € [0,1]. Thanks
to the following expansion formulae

hy (ml,...,xn) =21 Z mihg(xi,xiﬂ...,xn) + hy (mg,...,xn), (2.2.8)
1<i<n
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h4 1‘1, R’ i Z T Z xihg(xj, Tigl--- ,xn) + hy ($n) s (2.2.9)

j<i<n

by using an induction argument, our aim is to reduce the number of variables of inequalities which
are to be proved. More precisely, starting with x = (z1,...,2,), ¥y = (21,...,2,) in R™ we show that
(2.2.6) holds for vectors X = (x2,...,7,), ¥ = (y2,...,%s) in R*"! and then we continue the process
in a similar way until we reach the end in R. Finally, we use the fact (2.2.7) holds for n = 1 and the
proof of (2.2.6) is then complete. For each j > 1, let us consider

sz(x) = l'j Z .T}Z'hg(xi, Ti41 - ,xn). (2.2.10)

j<i<n

Then, by using (2.2.8) and (2.2.9), we can reduce the proof of (2.2.6) to the following inequality

n—1
S (T2(1 = Vx4 Ay) — (1= NTF(x) = MTE(y)) < —A%(1 -\ ZTZX y. (211
j=1

Therefore, once we prove (2.2.11) we can then use (2.2.8) in a repeated way and based on (2.2.7) and
(2.2.9) at the end of process, we finally get

ha((L=N)x+Ay) = (1 = Mha(x) = Mu(y) = TH(1 = Nx + Xy) = (1 = NTT(x) = ATE(y)

Fha((1 = )X+ Ay) — (1 = Nha(X) = Aha(y)

n—1
< =N(1=A)? D (TH(1 = Nx+Ay) — (1 = NT7F (%) — AT (y))
=1
Fha((1 = N)xn + Ayn) — (1 = ANha(zn) — Mha(yn)

1

< =A2(1-A (ZTf y) + ha(zn yn)> = =A% (1= N)’ha(x —y),

=1
and hence, (2.2.6) holds.

We prove now (2.2.11) by replacing =; = (x4, Zit1-.-,%n), ¥i = (Yi, Yi+1 - -, Yn) in relation (2.2.10),
i. e.

n—1
> (TA(1 = Nx+Ay) = (1= NTHx) = MTH()
=1
n—1 n
=D (= Nz +Ayy) Y (1= N + M) ha (1= N + AGi)
j=1 1=j
n—1 n n—1 n
=N w > wihg (@) = Ay Y yiha (i)
=1 ey =1 ey
n—1 n n—1 n

:—)\ Zprhg 1—)\)xz+)\yl +)\ 1—-A ZZPU

7j=11i1=j 7j=11i=j
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B (1= )5+ 47— (T

((1 — )\)I‘]l‘l + )\yjyi

)‘y]yz
e ha (3) - b (yn)

)‘( )sz

n—1 n .
NS A = b (3 — i) = 221 - A2 S TR (x -
j=1i=j e

where the last estimates are due to the fact that
(1 =Xz + Ay;) (1= Nai + Ayi) = =A(1 = A)piy + (1 = Nxjzi + Ay;ui,
pij = (¥ — yj)(zi — ¥i)-
Hence, the proof of (2.2.6) is now complete.

Note that, at this stage, we have proved (2.2.4) and (2.2.5) only for the case for d = 4. In addition,
we have also obtained the following generalized inequality in the case n = 2

Z (Td 1= \x+Ay) — (1= NTHx) - AT;’(y)) < ABFL(1 - AL ZTd (x—y), (2.2.12)
where
T]‘-i(x) =x; Z Tihg(Tiy Tig1 -, Tp). (2.2.13)
j<i<n

In what follows we prove (2.2.4) and (2.2.5) in the general case, by using (2.2.11), for any even
natural number d > 2, and by using again the induction argument, this time with respect to the even

parameter d. In order to do this, we suppose that for a fixed natural even number d > 2 the following
inequality holds

vl

ha((1 = Nx + Ay) — (1 — Nha(x) — Ma(y) < —A2(1— )3 hg(x —y). (2.2.14)

By using (2.2.13) we get

n—1
D TH(I = Nx+Ay) — (1— VT (x) = AT(y)
j=1
n—1 n
Ny +Ay) S = Ns + Aga) ha (1= ) (@) + AW - yn)
J:1 i=j
n—1 o
—(1=2X) Z% Z:czhd Tiy Tit] - - A Zyj Zyihd(yi, Yitl -+ >Yn)
I =1  i=j
n—1 n L
_)‘)Zzpijhd((ﬂfi—yi,l’iﬂ—yiﬂ...,x )+ A1 =\ Zzpw
j=1i=j e

(1= Naxjz; + Ay;ys
h 1= M)z, x01...,2n AYis Yisl oy Yn
(e s (1= Moz ) + Mt - 31)

(1 — A)le'i

_ AY;Yi
)\(1 — /\)pij

ha ((zis Tig1 -, 70)) — mhd ((Yi> i1 - - - ,yn))>
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n—1 n

- Zpij)\%(l ~ N ERa((5 — Yir Tis1 — Yir1 - T — Yn))
=1 =
n—1 n
A HZZTdX v),
Jj=1i=j

where we have used the following estimates
pij = (x5 — y;)(@i — i)

and
((1 — /\)(l)l + )\yl) ((1 — )\)CE, + )\yi) = —)\(1 — )\)pz‘j + (1 — )\)xlxi + /\ylyi.

We can now continue inductively the sequence of inequalities in order to get

d

hara((1= Vx4 Ay) = (1= Nhaya(x) = Mragaly) < A2 (1= 22 hgp(x —y), (2.2.15)

by using as the main tool the following generalised expansion formulas

haio (xl, e l‘n) =T Z Iihd(xia Titl .- ,In) + hgio (.752, ce ,xn) R (2.2.16)
1<i<n
haio (21,...,x Z T; Z .Z‘jhd(l‘j, Tjg1--- s Zn) | + haao (25) - (2.2.17)
i<j<n

More precisely, we obtain
ha2((1 = X)x + Ay) = (1 = Ahata(x) = Agy2(y)

= TH((1 = \x +XAy) — (1 = VT (x) — AT{(y)
+ha((1 = )X+ Ay) = (1 = Aha(x) — Aha(y)

n—1

<N (1N (T - Nt dy) — (1= M)~ AT2))

i=1
+ha((1 = MNan + Ayn) — (1 = Mha(zn) — Mha(yn)

< AP (Z T (x — y) + ha(zn yn)> = AP = M) e hy(x —y),

and hence, (2.2.6) holds in the general case d > 2. Therefore, the proof of (2.2.4) and (2.2.5) follows
easily. O

We end this subsection by presenting an inequality of Jensen’s type in the case of hy strongly convex
functions, for any even natural number d > 2.
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Proposition 2.2.3. (Jensen’s type inequality for hg strongly convexity) Let C > 0 and let d > 2
be an even natural number. If f : I — R, I C R is a given function such that F(xi,...,x,) =
f(x1) + -+ f(zn) is hgq strongly convex with modulus C on I™ then, for all x1,...,x, € I, the
following inequality holds

f<x1+---+xn> < J@) 4+ flan)

n n
2.2.18
_ol(ntd-1 vt a4 tald ( )
n d n n ’
Proof. Based on convexity properties of F'(-) — Chq(-) we have that
n n
< F(x!) — Chy(x}) + -+ + F(x™) — Chg(x")
— n )
where x! = (21,...,21), X? = (22,...,232), ..., X" = (zp, ..., T,) belong to I".
Consequently, we get
P (x1+-~-+a:n> _C<n+d—1> <x1+ +xn>d
n d n
Cin+d-1
< @)+ flon) (” )(?+ + )
n d
Finally, we easily get (2.2.18) and the proof is complete. O

2.2.2 Open problems on hy strongly convexity

In this subsection we are dealing with majorization results concerning hg strongly convex functions.
More precisely, we obtain Jensen’s type inequalities in two different contexts and we notice that even
the results are of the same type, the constants appearing in front of error term are different. We also
succeed to develop majorization results, such as Hardy-Littlewood-Polya’s and Popoviciu’s inequalities.

In order to compare Jensen’s type inequalities for hy strongly convex functions and uniformly convex
functions we present the following result (which can be seen as an easily consequence of the results
from [170]).

Proposition 2.2.4. (Jensen’s type inequality for uniform convezity) Let C > 0 and let f : I — R,
I C R be such that F : I" — R, defined as F(x1,...,x,) = f(x1) + -+ f(xn), is uniformly convex
with modulus C. Then, for all z1,...,x, € I the following inequality holds

; (xl +_..+wn> @)+t flan) C S (@i—a) (2.2.19)

n - n

n —
1<i<j<n
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Remark 8. Let C > 0 and let f: I — R, I C R such that F: I — R, defined as F(x1,...,x,) =
f(x1) + -+ + f(xn), is ha strongly convex with modulus C. Then, for all x1,...,x, € I, by using
(2.2.18) the following inequality holds

f<$1+"’+x”) cf@) 4 flzn) ot S (@i—a) (2.2.20)

n - n 2n2 L
1<i<j<n

Moreover, we can also take in Proposition 2.2.3 other type of functions, which are related to the
construction of hy polynomials. In order to do this, let us introduce

Fu(zy, ... @) = > flxiy) - flx,)  (E=2,...,n). (2.2.21)

1<i1 <9< <ip<n

Based on a similar strategy we can deduce the following result.

Proposition 2.2.5. Let C > 0,k > 2 and let f : I — R, I C R be such that Fy : I — R, which is
defined in (2.2.21), is he strongly convex with modulus C'. Then, for all z1,...,x, € I the following
iequality holds

<n> <fk <x1+---+xn> - f’“(:vl)+~-+f’“(wn)) B _0"221 S @iy’ (2222)

k n n —
1<i<j<n

Proof. The proof is very similar with the one presented in Proposition 2.2.3. O

In the second part of this subsection we present several majorization type inequalities in the context
of hg strongly convex functions. More precisely, we are dealing with extensions of Hardy-Littlewood-
Polya’s and Popoviciu’s inequalities in the case of our new class of convex functions.

Let us consider x* and y* two vectors with the same entries as x, respectively y, expressed in
decreasing order, as

m% o> gt yfz...>y7¢l'

Y

We say that, the vector x is majorized by y (abbreviated, x < y) if
k k

Satedut sksa-,
i=1 i=1

n n
St =3
=1 =1

More details and applications concerning the majorization theory can be found in [104]. We refer to
the monotonicity with respect to the majorization order, the so called Schur-convex property, which
has been introduced by I. Schur in 1923.

(2.2.23)

Definition 2.2.3. The function f : A — R, where A is a symmetric subset of R™, is called Schur-
convex if x <y implies f(x) < f(y).
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A simple computation tool (see, for instance, [104]) which is used to study the Schur-convexity
property of a function is given as follows. For any symmetric function f(x) = f(x1,x2,...,x,) having
continuous partial derivatives on I = I x I x - -- x I, the Schur-convexity property is reduced to check
the following inequality

of of o
(a:i—:vj)<a$i—8xj>20 (1<4d, j<n, xj,zj €l).

We introduce now the notions of hg strongly Schur convexity and uniformly Schur convexity.

Definition 2.2.4. Let C > 0. A function f : I — R is said to be hy strongly Schur-convexr with
modulus C' if the function f(-) — C hg(-) is Schur-convez.

Definition 2.2.5. Let C > 0. A function f : I™ — R is said to be uniformly Schur-convex with
modulus C'if the function f(-) — C ||-||* is Schur-convez.

Proposition 2.2.6. Let A be a symmetric subset of R™ and let f : A — R be a symmetric function
with continuous partial derivatives. Then, f is strongly Schur-convex if and only if

of  of
<35Ei dz;

)(ﬂfi—%)zc(wi—%’j)z (1 <4, j<n, zj,z; €R).

Proof. The proof easily follows from

8h2(:p1,x2,...,xn) 6h2(x1,m2,...,mn) .
a$1 (9332 B ($1 Ig).

O

We first remark that a similar Jensen’s type inequalities is obtained by using this time majorization
arguments and obtaining another constants in front of the right hand error term.

Proposition 2.2.7. (Jensen’s type inequality via Hardy-Littlewood-Polya’s inequality) Let C > 0 and
let f:I— R, ICR bea function such that F(x1,...,x,) = f(x1)+ -+ f(zn) is hq strongly Schur

convex with modulus C on I™. Then, for all x1,...,x, € I the following inequality holds
x4+, fl@) +-+ flan)  C 2
1<i<j<n

Proof. Based on the following well-known majorization result

<x1+...+a:n 1+ -+

yeeny ) <(:U1,...,xn)

n n

and by using Schur convexity property of F'(-) — Cha(-) we get

nf<m1+---+:cn> _ch, <:r1+---+:cn’”":v1+--~+:cn>
n

n n

S f($1)++f(xn) _ChQ(xla"'axn)7
which yields (2.2.24). O
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We are able now to deduce and to compare two different versions of Hardy-Littlewood-Polya’s ma-
jorization theorem, one for uniform convexity case and another one for hy strongly convexity case.

We start by proving an useful lemma, which represents the triangle inequality in the reverse way, in
majorization settings. In this context, connections with the subdifferential concept can be established.
For more details, see [135].

Lemma 2.2.1. For each x <y on R" the following inequality holds

hg(y) > hQ(X) + h2(y — X). (2.2.25)

Proof. By using (2.2.23) we get

i) ) = (o) = (at) 4 2 - 3t

n n

where S = Z T = Z y;. Thus, we have to prove that the sum from the right hand side of the above
i=1 i=1

inequality is positive, and this can be done by using a classical telescopic sums trick as follows

n n
Dl —aD(S ) =D —w)w
i=1 i=1
n—1 n
:Z (ﬁ‘ﬁﬂ) (yf—x%%——i—yf—xf) +33le (yf—xf) >0,
i=1 i=1
where for the last estimates we have essentially used (2.2.23). O

Proposition 2.2.8. (Hardy-Littlewood-Polya’s inequality for uniformly convezity) Let C > 0 and let
f:I—= R, ICR bea function such that F(x1,...,x,) = f(x1) + - + f(zn) s uniformly Schur
convex with modulus C on I™. If x <y on I"™ the following inequality holds

n

S Fw) =) fla) +CY (i — ) (2.2.26)
i=1 i=1

=1

Proof. Since the function f(-) — C|-|? is convex, by using the properties of the subdifferential we get
i.

the existence of \; € dg(x;), 1. e.
fly) = Cy* = flzi) = Caf + (N = 2Cz)(y — ;) (i=1,....,n, y€l).

Hence, summing all the above inequalities for each y = y; we obtain

Zf(yi)zzfmwcz — +Z —20;)(y; — 1),
i=1 =1 ]
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which leads to . . . .
Yo fw) =D fla)+CY (i—=)+ D Ny
i=1 i=1 i=1 i=1

In order to complete the proof of (2.2.26), it is enough to show that y ;" | Ai(y; — ;) > 0. But, this
can be done by using a similar argument as in the proof of Lemma 2.2.1. O

Theorem 2.2.2. (Hardy-Littlewood-Polya’s inequality for strongly hg functions) Let C > 0 and let
f:I—=R, ICR bea function such that F(z1,...,x,) = f(x1) + - -+ f(x,) is hq strongly Schur
convex with modulus C on I"™. If x <y on I" the following inequality holds

Zf vi) ZZ zi) + Cha(y — x). (2.2.27)

Proof. By using the definition of hy strongly Schur convexity with modulus C we get
D fwi) =Y fwi) +C (haly) — ha(x)),
i=1 i=1

which finally gives (2.2.27), as a direct consequence of Lemma 2.2.1. O

In the end of this subsection we give some natural extensions of Popoviciu’s inequalities for ho strongly
convex functions, but also for uniformly convex functions.

Proposition 2.2.9. (Popoviciu’s type inequality for ha strongly convexity) Let C > 0 and let f : [ —
R, I C R be a function such that F(x1,...,z,) = f(x1)+ -+ f(xn) is hq strongly Schur convex with
modulus C on I™. Then, for all x,y,z € I the following inequality holds

f(x)+f;y)+f(z) +f(“§”) . §<f(w;y>+f<x+2>+f<y“>> (2.2.28)

b (=P =2+ = 2)).

Proof. We begin by recalling the following majorization relation (see, for instance, [114]), i. e. for all
x,y, 2 € R we have that u < v, where

r+y r+y r+z r+2 Yy+z y+=z
2 7 27 27 27 2 7 2 ’

3 3 3
By Schur-convexity properties of F(-) — Cha(-) we obtain

f(x)+f(y)+f(z)+3f<W) 22<f<372+y>+f<9642r2>+f<y42rz>>

+C (hg(v) - hg(u)) .

(x+y+z r+y+z r+y+z >
v = x, Y,

By using the following tricky identity
1
“(z+y+2)?

o) — ha(w) = Sha(,9,2) ~ 3

we deduce that (2.2.28) holds and the proof is complete. O
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Proposition 2.2.10. (Popoviciu’s type inequality for uniform convezity) Let f : I — R and let C > 0
be such that g(-) = f(-) — C'| - |? is convex on I. Then, for all x,y,z € Ithe following inequality holds

f(:v)+féy)+f(Z)+f<x+13/+x> 2§<f($;y)+f<x—2|—z)+f<y—2kz>>

P (=P =2+ = 2)). (2:2.29)

Proof. For each x, y, z € I, by applying Popoviciu’s classical inequality for the convex function f(-) —
C'|-|? we have that

1)+ 1)+ 1) +37 (FHET) 2 (1T + (D + 1))

) p )+

2 2 2 2
+C<x2+y2+22+3<x+g+x> —2(5”;3’) —2<x;2> —2<y;z> )

Finally, several computations in the last term of the above inequality gives (2.2.29) and the proof is
complete. ]

Remark 9. Notice that, all inequalities in the above two propositions differ only by the constants
appearing in the right hand error term, which can be related to the variance/dispersion in probability
theory. We can also remark that different constants cannot appear here by only moving from one
concept to the other one, since we have no equivalence between ho strongly convex functions with
modulus C1 and uniformly conver functions with modulus Co. See also the case of Jensen’s type
mequalities. We end this remark be mentioning that, in all the above results, we can also consider the
case of functions defined in (2.2.21).

Finally, we emphasize that the notion of hy strongly convexity and the results presented in this
subsection can also be seen in connection with other results existing in literature. We are strongly
confident that the present section gives the possibility to develop other interesting results on this topic,
such as in other relevant papers (see, for instance [2, 3, 15, 96, 133, 169]).

More precisely, our first proposal of new research is related to the class of w-m-star convex functions,
for which modulus function w can be replaced with the polynomial function hy. This is motivated by
[96], where some similar properties are presented and for which we are able to express w-m-star convex
property, for some particular function w, in terms of convexity of a suitable perturbed function. The
second aim is to get Sherman’s type inequalities for hy strongly convex functions. Also, our ideas
can also be extended on spaces related to other weaker notions (relative convexity, spaces with global
nonpositive curvature, see [124, 126)).

On the other hand, new Ingham’s type weighted inequalities are recently proved in [154, 155] by
using the positivity of quadratic polynomials. The proofs are essentially based on an Ingham’s proof
technique inspired from [78]. As applications, the authors consider families of frequencies with rele-
vance in the approximation of controls theory, for which the uniform (with respect to the mesh-size)
controllability property of the semi-discrete model is proved, when the spurious frequencies (the gap
between them tends to zero when the mesh size goes to zero) are eliminated.
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The third future aim is to use the theory developed in this section to prove the positivity of a very
general class of weighted symmetric polynomials. Then, as a direct consequence we may provide
Ingham’s type inequalities, when we eliminate frequencies which are very close to each other. We can
also study the uniform boundedness of a sequence of discrete controls, related to such inequalities.
This is needed in order to study the approximations of the controls of the continuous wave equation.
See, for instance, [45, 77, 78, 81, 99, 100, 172]. We also expect that, a deep development of the
results from this section to give us the possibility to prove Ingham’s type inequalities in a very general
framework, by considering hg strongly convexity assumptions and eliminating the frequencies in the
area where the gap is lost.

Finally, based on the fact that different kind of strongly and weakly convexity notions are studied
in the literature, some clarifying remarks are needed. Starting with strongly convex and strongly
quasy-convex functions introduced by Polyak [142] other notion of uniformly convex function at a
point are studied in [169]. More precisely, in order to define this pointwise notion of convexity it was
introduced a positive function ¢ depending on the term ||z — y||, with have a similar role as the error
term in the right hand side of (2.2.2). Note that, in our case, the error term of the form hy(z — y) is
a function of several variables and cannot be seen as a function of the form §(||z — y||). Moreover, in
[82, 170, 171] the notion of convexifiable function (in the sense of Definition 2.2.1 ) is studied. In this
context, similar inequalities, even of integral type, are obtained. See also [46], for other interesting
results. Hence, the idea to consider positive symmetric polynomials instead of functions depending
on the norm and the possibility to obtain similar results offer a new and fresh perspective within the
topic of convexity.

2.3 The Hardy-Littlewood-Pdlya inequality of majorization in the
context of w-m-star-convex functions

In this section, the Hardy-Littlewood-Pélya inequality of majorization is extended for w-m-star-convex
functions to the framework of ordered Banach spaces. Several open problems which seem to be of
interest for further extensions of the Hardy-Littlewood-Pdlya inequality are also included. The Hardy-
Littlewood-Pdlya theorem of majorization is an important result in convex analysis that lies at the
core of majorization theory, a subject that has attracted a great deal of attention due to its numerous
applications in mathematics, statistics, economics, quantum information etc. See [103, 104, 114, 128,
139, 140] and [156] to cite just a few books treating this topic.

The relation of majorization was initially formulated as a relation between pairs of vectors with real
entries rearranged downward, but nowadays its formulation as a preordering of probability measures.

For the reader’s convenience we briefly recall here the most basic facts concerning the theory of
majorization.

Given two discrete probability measures p = ch\le Mibx, and v = Z,ivzl Akdy,, supported by a
compact interval [a, b], we say that p is majorized by v (denoted p < v) if the following three conditions

are fulfilled:
(M1) %3 >x3>--->xpN

(M2) Z?Zl Aix; < Zle Ay; fork=1,...,N; and
(M3) S, hixi = S Ay



CHAPTER 2. NEW MAJORIZATION RESULTS ON Hp STRONGLY CONVEX FUNCTIONS53

When only conditions (M 1) and (M2) occur, we say that u is weakly majorized by v (denoted p <y, v).

Hardy, Littlewood and Pdélya [68] used a stronger formulation of (M1), by requiring also that y; >
y2 > -+ > yn. Later, their result was improved by Maligranda, Pe¢ari¢ and Persson [101] who were
able to prove that

b N b N
W=V implies/ fdu= Zf(xk) < / fdv= Zf(yk), (HLP)
a k=1 @ k=1

for all continuous convex functions f : [a,b] — R. Moreover, the same conclusion holds in the case of
weak majorization and convex and nondecreasing functions.

Nowadays the inequality HLP is known as the Hardy-Littlewood-Pdlya inequality of majorization.

In the early 1950s, the Hardy-Littlewood-Pdlya inequality was extended by Sherman [160] to the case
of continuous convex functions of a vector variable by using a much broader concept of majorization,
based on matrices stochastic on lines. The full details can be found in [114], Theorem 4.7.3, p. 219.
Over the years, many other generalizations in the same vein have been published. See, for example,
[31, 117, 118, 124, 125, 126] and [133].

As was noticed in [112] and [113], the Hardy-Littlewood-Pélya inequality of majorization can be
extended to the framework of convex functions defined on ordered Banach spaces alongside the con-
ditions (M1) — (M3). The aim of this section is to prove that the same works for the larger class of
w-m-star-convex functions.

The main features of these functions are discussed in subsection 2.3.1. In subsection 2.3.2 we present
different types of majorization relations in ordered Banach spaces. The corresponding extensions of
the Hardy-Littlewood-Pdélya inequality constitute the objective of subsection 2.3.3. The section ends
with mentioning several open problems which seem to be of interest for further extensions of the
Hardy-Littlewood-Pélya inequality.

2.3.1 Preliminaries on w-m-star-convex functions

Throughout this subsection E is a Banach space and C' is a convex subset of it.

Definition 2.3.1. Let m be a real parameter belonging to the interval (0,1]. A function ® : C' — R
is said to be a perturbed m-star-convex function with modulus w : [0,00) — R (abbreviated as w-m-
star-convex function) if it fulfils an estimate of the form

(1= A)x+Amy) < (1 = A)P(x) + mAL(y) — mA(l — Nw ([x = y|),
for allx,y € C and X\ € (0,1).

The w-m-star-convex functions associated to an identically zero modulus will be called m-star-convex.
They satisfy the inequality

(1 —Nx+Amy) < (1= N)P(x) + mAD(y),

for allx,y € C and X € (0,1).
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Notice that the usual convex functions represent the particular case of m-star-convex functions where
m = 1. On the other hand every convex function is m-star-convex (for every m € (0,1]) if 0 € C' and
®(0) < 0. Indeed, we have

P((1—N)x+ Amy) = 2((1 — \)x + dmy + (A — Am)0)
< (1=XN)P(x) + mA®(y) + (A — Am)®(0)
=(1—=XN)P(x) + mAD(y).

Every w-m-star-convex function associated to a modulus w > 0 is necessarily m-star-convex. The
w-m-star-convex functions whose moduli w are strictly positive except at the origin (where w(0) = 0)
are usually called uniformly m-star-convezr. In their case the definitory inequality is strict whenever

x #yand A € (0,1).

By reversing the inequalities, one obtains the notions of w-m-star-concave function and uniformly
m-star-concave function.

The theory of m-star-convex functions was initiated by Toader [166], who considered only the case
of functions defined on real intervals. For additional results in the same setting see [108] and the
references therein.

A simple example of a (16/17)-star-convex function which is not convex is
f:[0,00) =R, f(z)=a*—523+92% - 5z. (2.3.1)

See [108], Example 2. Note that if ® : C — R and ¥ : C' — R are w-m-star-convex functions and
a, B € Ry, then
a® + ¥ and sup {P, V}

are functions of the same nature. So is
PxU:CxC—=R, (dxV)(x,y)=2(x)+ ¥Y(y).
The class of w-m-star-convex functions is also stable under pointwise convergence (when it exists).

Assuming C' C FE is a convex cone with vertex at the origin, the perspective of a function f: C — R
is the positively homogeneous function

FiOx(0,00) =R, f(x.t)=tf (%)

Lemma 2.3.1. The perspective of every m-star-convex/concave function is a function of the same
nature.

Proof. Indeed, assuming (to make a choice) that f is w-m-star-convex, then for all (x,s),(y,t) €
C x (0,00) and A € [0,1] we have

()

B (I —=X)s X Amt y
_f<(1—)\)s+)\mt's+(1—)\)s+)\mt't)

— (1 jl)\;s)::imtf (%) + (1— )\);7:3— )\mtf (%)
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that is,

S = N)x+ Amy, (1 = N)s + xmt) < (1= N)f(x,5) + Amf(y,t).

O

Lemma 2.3.1, allows us to easily produce nontrivial examples of m-star-convex functions of several
variables with some nice properties. For example, starting from (2.3.1), we conclude that

z* — 53t + 9222 — bat3

O(x,t) = 3

is a (16/17)-star-convex function on [0, 00) x (0, 00).

Under the presence of Gateaux differentiability, w-m-star-convex functions generate specific gradient
inequalities that play a prominent role in our generalization of the Hardy-Littlewood-Pélya inequality
of majorization.

Lemma 2.3.2. Suppose also that C' is an open convex subset of the Banach space E and ® : C' — R
s a function both Gateauz differentiable and w-m-star-conver. Then

m®(y) > ¢(x) + d®(x)(my — x) + mw (||x —yl), (2.3.2)

for all points x,y € C.

Proof. Indeed, we have

B((1—N)x +/\m/\y) — () —®(x) +md(y) —m(l — Nw (|x —y|)

and the proof ends with passing to the limit as A — 0+ . O

Remark 10. Lemma 2.3.2 shows that the critical points x of the differentiable w-m-star—convex
functions are those for which w > 0 fulfil the property

inf P(y) > ®(x).
m inf &(y) > &(x)

Unlike the case of convex functions of one real variable, when the isotonicity of the differential is
automatic, for several variables, this is not necessarily true in the case of a differentiable convex
function of a vector variable. See [112], Remark 4.

In this section we deal with functions defined on ordered Banach spaces, that is, on real Banach
spaces endowed with order relations < that make them ordered vector spaces such that positive cones
are closed and

0 < x <y implies x| < |y]-

The Euclidean N-dimensional space RY has a natural structure of an ordered Banach space associ-
ated to coordinatewise ordering. The usual sequence spaces ¢y, ¢, /P (for p € [1,o0]) and the function
spaces C'(K) (for K a compact Hausdorff space) and LP (i) (for 1 < p < oo and p a o-additive posi-
tive measure) are also examples of ordered Banach spaces (with respect to coordinatewise/pointwise
ordering and natural norms).
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A map T : E — F between two ordered vector spaces is called isotone (or order preserving) if
x <y in E implies T'(x) < T(y) in F'

and antitone (or order reversing) if —T is isotone. When T is a linear operator, T is isotone if and
only if 7" maps positive elements into positive elements (abbreviated, 7" > 0).

For basic information on ordered Banach spaces see [113]. The interested reader may also consult
the classical books of Aliprantis and Tourky [9] and Meyer-Nieberg [106].

As was noticed by Amann [10], Proposition 3.2, p. 184, the Gateaux differentiability offers a conve-
nient way to recognize the property of isotonicity of functions acting on ordered Banach spaces: the
positivity of the differential. We state here his result (following the version given in [112], Lemma 4):

Lemma 2.3.3. Suppose that E and F are two ordered Banach spaces, C' is a convex subset of E
with nonempty interior int C and ® : C' — F is a convex function, continuous on C and Gdteaux
differentiable on int C. Then ® is isotone on C if and only if ®'(a) > 0 for all a € int C.

Remark 11. If the ordered Banach space E has finite dimension, then the statement of Lemma 2.3.3
remains valid when the interior of C' is replaced by the relative interior of C. See [114], Ezercise 6,
p. 81.

As was noticed in [108], Example 7, the function
v:(=00,1] = R, ~(z) = —22% + 52% + 62

is convex on (—o00,5/6], concave on [5/6, 1], and m-star-convex on (—oo, 1], with m = 27/28. The last
assertion follows from a formula due to Mocanu,

o inf{m’(x) —7(x)

y’y’(az) _ v(y) : y,)/(x) - V(y)a T,y € I}a

mentioned at the bottom of page 72 in [108].

Proceeding like in Lemma 2.3.1, one can prove that the function associated to v,

223 b2

is 27/28-star-convex. The function Y is also Gateaux differentiable, with

.732

1
(z,y) = (y2 (—62* + 10zy + 6y7) , 7

(1 -59)).

According to Lemma 2.3.3, the map
dY : (—o0,1] x [1,00) C R? — R?
is isotone on the domain where d?Y = d(dY) is positive, that is, where the Hessian of T,

— 5 (62 —5y) 2.5 (62 — by)
2 3
2.5 (62 — 5y) —277 (62 — 5y)

has nonnegative entries only. Therefore dY is isotone on (—oo, 1] X [1,00).
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2.3.2 The majorization relation on ordered Banach spaces

In this subsection we discuss the concept of majorization in the framework of ordered Banach spaces.
Since in an ordered Banach space not every string of elements admits a decreasing rearrangement, in
this section will concentrate on the case of pairs of discrete probability measures at least one of which
is supported by a monotone string of points. The case where the support of the left measure consists
of a decreasing string is defined as follows.

Definition 2.3.2. Suppose that Zévzl A0, and Zivzl A0y, are two discrete Borel probability mea-
sures that act on the ordered Banach space E and m € (0,1] is a parameter. We say that Zszl AiOxy
is weakly mL‘-magjorized by Z]kvzl Aidy, (denoted Zszl Mebx,. =<wmLt Z,]Cvzl Aidy, ) if the left hand
measure is supported by a decreasing string of points

X1 > > XN (2.3.3)

and

Z/\kxk < Z)\kmyk foralln € {1,...,N}. (2.3.4)
k=1 k=1

We say that Zszl AkOx,, is mLY-majorized by Zévzl A0y (denoted
SN Akl <t Son_ Akby, ) if in addition

N N
Z )\kxk = Z )\kmyk. (2.3.5)
k=1 k=1

Notice that the context of Definition 2.3.2 makes it necessary that all the weights A1, ..., Ay belong
to (0,1] and Z,ivzl A = 1.

The three conditions (2.3.3), (2.3.4) and (2.3.5) imply myy < xx < x1 < my; but not the ordering
y1 > --- > yn. For example, when N = 3, one may consider the case where
m=1, A= =XN=1/3, x) =% =Xx3 =X
and
Y1=X, Y2=X+12Z,y3 =X—1Z,
z being any positive element.

Under these circumstances it is natural to introduce the following companion to Definition 2.3.2,
involving the ascending strings of elements as support for the right hand measure.

Definition 2.3.3. The relation of weak mR'-majorization,

N N
Z AkOx;, <wmR? Z )‘kéyw
k=1 k=1

between two discrete Borel probability measures means the fulfillment of the condition (2.3.4) under
the presence of the ordering
yi <o <ynN; (2.3.6)

assuming in addition the condition (2.3.5), we say that Zivz1 MO, is mRT-magorized by Zi\;l MOy,
(denoted Z]kV:1 MeOx, =< mRt Z,ivzl Aklyy ) -
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When every element of E is the difference of two positive elements, the weak majorization relations
<mriand <, pt can be augmented so as to obtain majorization relations.

2.3.3 The extension of the Hardy-Littlewood-Polya inequality of majorization

The objective of this subsection is to consider the corresponding extensions of the Hardy-Littlewood-
Pélya inequality of majorization for <,,,,7.ts <mrts <wmptand <, zt. Moreover, we also present also
a Sherman type inequality.

The proof of the following theorem is inspired by the techniques succesfully used in [101] and [112].

Theorem 2.3.1. Suppose that Eivzl Aidx, and chv:l A0y, are two discrete probability measures
whose supports are included in an open convex subset C of the ordered Banach space E. Ifzgzl MeOxy <mLt
Zivzl Akly, , then

N N N
m> M@(yr) =D M@(xi) + Y Mew(llxn — yll), (2.3.7)

for every Gateaux differentiable w-m-star-convex function ® : C — F whose differential is isotone and
satisfies the hypotheses of Lemma 2.3.2.

The conclusion (2.3.7) still works under the weaker hypothesis chvzl MeOxy =wmLt Z]kvzl Aidy,, pro-
vided that ® is also an isotone function.

Proof. According to the gradient inequality (2.3.2), we have

N N N
m Yy M®(yr) = Y M) = D Ak (mP(yr) — B(xy))
k=1 k=1 k=1

N

"(xk) (Aemyr — Apxg) +Z)\kw (Ixk = y&ll)
k=1 k=1

Mz

whence, by using Abel’s trick of interchanging the order of summation ([114], Theorem 1.9.5, p. 57),
one obtains

N
Z)\km@ Yk) Z/\kfb Xk) Z)\kw (IIxx — yxl)

N m m—1
> ' (x1)(Mmy1 — \xa) + > @ [Z MYk = Mxk) = Y (Aeyk — )\kxk)}
m=2 k=1 k=1

N-1 m N
|: (I)/ Xm - Xm+1 Z ALmyr — kxk)} + (I),(XN) (Z(Akmyk — )\kxk)> .
m k=1

=1 k=1

When Z}ZgV:1 MOx), <mLt Zgil Ak0y, , the last term vanishes and the fact that D > 0 is a consequence
of the isotonicity of ®. When Zszl MeOx, =wmIt Z]k,\[:l Aidy, and @ is isotone, one applies Lemma
2.3.3 to infer that

N
(I)/(XN) <Z()\kmyk - /\kxk)> > 0.

k=1
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The other cases can be treated in a similar way. O
Remark 12. FEven in the context of usual conver functions, the isotonicity of the differential is not

only sufficient but also necessary for the validity of Theorem 2.3.1. See [112], Remark 5.

We leave it to the reader as an exercise to formulate the variant of Theorem 2.3.1 in the case of
relations <,,,grand <, gt .

2.3.4 Further results and open problems

In the following we mention some open problems which might be of interest for further research on.

Notice first that any perturbation of an w-m-star-convex function @ satisfying the hypotheses of
Theorem 2.3.1 by a bounded function II verify an inequality of majorization very close to (2.3.7).
Precisely, if |TI| < § and E;@V:1 MeOx,, =Lt Z]kvzl Aidy,, then U = & 4 IT will verify the relation

N N N
m> Ne®(yr) =D M@(xn) + Y Mw(llxk — yell) — (1+m)d.
k=1 k=1 k=1

This call the attention to the following class of approzimately w-m-star-convex functions:

Definition 2.3.4. A function ® : C — R is said to be d-w-m-star-convex function if it verifies an
estimate of the form

(1= N)x+ Amy) < (1 = AN)®(x) + mAD(y) — mA(l — Nw ([|x — y|) + 9,

for some § >0 and all x,y € C and X € (0,1).

The above definition extends (for w = 0 and m = 1) the concept of §-convex function, first considered
by Hyers and Ulam [75] in a paper dedicated to the stability of convex functions. It is natural to rise
the problem wheather their result extends to the framework of J-w-m-star-convex functions:

Problem. Suppose that C is a convex subset of RV . Is that true that every §-w-m-star-convex function
®: C — R can be written as ® = W + 11, where ¥ is an w-m-star-convez function and Il is a bounded
function whose supremum norm is not larger than kné , where the positive constant ky depends only
on the dimension N of the underlying space?

Of some interest seems to be the concept of local approximate m-star-convexity suggested by [48],
Definition 1, which clearly yields new extensions of the majorization inequality:

Definition 2.3.5. A function ® : C' — R is called locally approximately m-star-convez if for every
xg € C, and every € > 0 there exists § > 0 such that for all x,y in the open ball of center xg and
radius 6 and all A € (0,1),

(1 — Nz +mAy) < (1 —N)®(z) +mAd(y) +t(1 —t) |z — y]|-
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The whole discussion above can be placed in the more general context of M,-convexity.
Recall that the weighted M,-mean is defined for every pair of positive numbers a, b by the formula

(1= N)aP + XbP)/Pif p € R\{0}
My(a,b;1 — X\ A\) = a' A, ifp=0
max{a, b}, if p=o0,

where X € [0,1]. If p > 0, then it is usual to extend M, to all pairs of nonnegative numbers.

Definition 2.3.6. A function ® : C' — R is called w-m-M,-star-convex if there exist a number p € R
and a modulus w : [0,00) — R such that

®((1=N)x+Ay) < (1= N2x)” +mAd(y)")"/? = mA(L = Nw (Ix = y])
for allx,y € C and X € (0,1).

Reversing the inequality one obtain the concept of w-m-M,-star-concave functions.

The usual M,-convex/M,-concave functions represent the particular case where m =1 and w = 0.

It is worth noticing that the M,-convex (M,-concave) functions for p # 0 are precisely the functions
® such that ®P is convex (concave), while the My-convex (My-concave) functions are nothing but the
log-convex (log-concave) functions. Notice also that the Mq.-convex (M_.-concave) functions are
precisely the quasi-convex (quasi-concave) functions.

The next result represents the extension of Lemma 2.3.2 to the case of w-m-M,,-star-convex functions.

Lemma 2.3.4. Suppose that C' is an open convex subset of the Banach space E and ® : C' — R, is a
function both Gateaux differentiable and w-m-M,-star-convex. If p # 0, then ® verifies the inequality

PP (y) = OF(x) + p@(x)P " d®(x)(y — x) +mw ([x — yl)),

for allx,y € C.

The analogue of this result for p = 0 and w = 0 requires the strict positivity of the function ® and

can be stated as
d®(x)(y — x)

d(x) ’

for all x,y € C. The last two inequalities work in the reverse direction in the case of w-m-Mp-star-

log ®(y) — log ®(x) >

concave functions.

While it is clear that Lemma 2.3.4 allows us to prove Hardy-Littlewood-Pélya type inequalities
more general than those provided by Theorem 2.3.1, the exploration of the world of w-m-M)y-star-
convex/concave functions for w # 0 and m € (0, 1) is just at the beginning.
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2.4 Convex type inequalities with nonpositive weights

In this section we extend Jensen-Steffensen’s inequality via majorization arguments, into the framework
of R™ for any n > 2. Generally speaking, our aim is to prove convex type inequalities relaxing the
weights which are allowed to be nonpositive. We are dealing with monotonic increasing or decreasing
sequences with respect to majorization relation in R™ and the well known behaviour under convex
functions invariant on permutation of variables. More precisely, Jensen-Steffensen’s and Sherman’s
type inequalities are obtained, even in the context of strongly convex functions. Moreover, applications
concerning relative convexity aspects and extensions on spaces with curved geometry could be also
derived.

In the twentieth century, an intense research activity and many significant results were obtained in
geometric functional analysis, mathematical economics, convex analysis, and nonlinear optimization.
The classical books [68, 104] played a prominent role related to the subject of convex functions, in
which one of the most relevant topic is devoted to the concept of majorization.

For any two vectors u = (ug,...,u,) and v = (vy,...,v,) let us consider u* and v* two vectors with
the same entries as u and v, expressed in decreasing order, as

u% > .2 uﬁ, U% > ... > vi.

We say that, the vector u is majorized by v (abbreviated, u < v) if

7

k k

Yup <> wf (1<k<n-1),

=1 =1 (2.4.1)
n n

> up = v

1 =1

For other relevant details and various applications concerning the majorization theory we refer to
[104]. In this context, the monotonicity with respect to the majorization order is called Schur-convex
property and has been introduced by I. Schur in 1923. It is well known that

u<v iff u=vA,

for some doubly stochastic matrix A = (a;j) € M, »(R), i.e. a matrix with nonnegative entries and
rows and columns sums equal to 1.

The concept of majorization is a powerful topic of research with relevant results in different areas.
In this regard, we just enumerate few of them: a necessary and sufficient condition for a linear
map to preserve group majorizations can be found in [131]; new majorization results are studied in
[83, 132]; interesting properties on superquadratic functions related to Jensen—Steffensen’s inequality
are obtained in [1]. All these ideas are also based on the theory of uniformly convex functions, which in
addition gives the possibility to define the concept of majorization into the spaces of curved geometry
(see [126]). For other results see [114, 124, 131, 133, 134, 135].

The weighted concept of majorization between two vectors u = (uy,...,u) € I', v = (v1,...,vm) €
I™ with nonnegative weights a = (ay,...,a;) € [0,00)! and b = (b1,...,by) € [0,00)™, where I is an
interval in R and m, [ > 2, has been defined in S. Sherman [160]. The concept of weighted majorization
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is defined by assuming the existence of a columns stochastic matrix A = (o;) € M (R), i.e. a matrix
with nonnegative entries and columns sums equal to 1, such that

l
bj :Zaiaﬁ, (_] = 1,...,m), (242)
i=1
m
U; = Zvjaj’ia (Z = 1, ey l) (243)
j=1

Under conditions (2.4.2) — (2.4.3) it is proved that, the following inequality

l m
D aif(ui) < bif(vy)
=1 7j=1

holds for every convex function f : I — R. See [160]. We can write conditions (2.4.2) — (2.4.3) in the
matrix form

b=aAT and u=vA.

In the rest of the section we write
(u,a) < (v,b)

and say that a pair (u,a) is weighted majorized by (v,b) if (2.4.2) — (2.4.3) are satisfied for some
columns stochastic matrix A. Note that, in the case { =1 and b = [1] we deduce Jensen’s inequality.
When m = [ and all weights a; and b; are equal to 1/m, the condition (2.4.2) assures the stochasticity
on Tows, so in that case we deal with doubly stochastic matrices.

Since all these above inequalities are dealing with positive weights the study of the case of nonpositive
weights is very challenging. In this context we recall one of the first relevant step, the so called Jensen
Steffensen inequality. We refer to [115] for the following result.

Theorem 2.4.1. Let z, < xp—1 < -+ < x1 be points in [a,b] and let p1,...,p, be real numbers such
that the partial sums Sy = Zle p; verify the relations

08, <8, and S,>0.

Then for CVETY CONVET functions [: [a, b] — R we have the mequalzty
i p Tk )-
g 4 1pk’ k =g ] k k

The aim of this section is to present new extensions of the above inequality for the case of finite
dimensional spaces. More precisely, our first aim is to extend Theorem 2.4.1 in the framework of R”
and then to derive Sherman and Jensen Steffensen’s type inequalities for perturbed convex functions
with complete homogeneous symmetric polynomials. We are very confident that our strategy ca be
also adapted to more general spaces, not only in R", but also in spaces with curved geometry.

The structure of the section is at follows: in Subsection 2.4.1 we briefly present and introduction with
the motivation and some preliminaries concerning historical aspects of the main problem we study;
Subsection 2.4.2 is devoted to Jensen Steffensen’s inequalities in the framework of R" via majorization
concept; in Subsection 2.4.3 we present some application related to Sherman’s inequalities when the
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weights can be chosen to be nonpositive and also to Jensen Steffensen’s type inequalities for perturbed
convex functions with complete homogeneous symmetric polynomials; Subsection 2.4.4 presents some
conclusions and further applications related to relative convexity aspects and the possibility to transfer
similar results into the spaces with curved geometry.

2.4.1 An extension of Jensen-Steffensen’s inequality context in R" via majoriza-
tion ordering

In this subsection we introduce majorization concept in order to present a general strategy which allow
us to extend Jensen-Steffensen inequality from R to multidimensional space R™. More precisely, we
prove our first result, given by an extension of the Jensen-Steffensen inequality.

The following lemma is used to prove the main result of this section.

Lemma 2.4.1. For any Uy, Us, ---, Uy, doubly stochastic matrices in My, ,(R) we have

Urxi +Usxg + -+ + UnXm < X1 + X2 + -+ + Xy,

for any x1,..., %y, € R™.
Proof. If we denote by u; = Uixq, ..., Uy, = UpnX,, we need to prove that
up +tug+ -y <X+ X Xy
Since u; < x;, using (2.4.1), for any ¢ = 1,...,m, and summing up all the inequalities we get the
conclusion.

O

In the following sentences we recall some basic facts relevant in our context.

Remark 13. Note that, every convex function defined on R™ admits one sided directional derivatives
at any point and, moreover, O f(a) is singleton precisely when f has directional derivative f'(a;v) and,
in that case we have that Of(a) consists of the mapping v — f'(a;v).

Based on [115, Remark 3.6.1.], we have that
fi(asv) > (d,v) > f'(a;v) (a,v e R",d e df(a)),
where

o as) — i T@T) ~ f@)

t—04 t

(a,v € R",d € 0f(a)),
and z belongs to the subdifferential of f at the point a, namely df(a), means that

f@)= fla)+{x—a,z)  (zeR").

Hence, taking into account the above relations we get

f(z) > f(y) +(d,z—y) (x<y <1z dedf(x), (2.4.4)



CHAPTER 2. NEW MAJORIZATION RESULTS ON Hp STRONGLY CONVEX FUNCTIONS64

f(z) < f(y) +(d,z—y) (y<z<x, dedf(x)). (2.4.5)

Moreover, using the linearity of the scalar product we can also have

(viz—y)>(u,z—y)>0 (a<b,y <z uecdf(a), vedf(b)).

Inspired from [115] we shall use the following notation related to z1, ..., 2z, € R™ and p1,...,p, € R:

i:plzl+"'+pmzm7
Py=pi+-+pg (ke {1,2,...,m}),
Po=pr+-+pm  (ke{l,2,...,m}).

Definition 2.4.1. We say that a sequence z1, ...,z € R" is monotonic decreasing with respect to
majorization relation iff the following relations hold

Zopy < Zm_1 <+ < Zg < Z1. (2.4.6)

We are now in position to present the extension of Jensen-Steffensen’s type inequality in R”.

Theorem 2.4.2. Let I be an interval in R and m, n > 1. If f : I — R is a convex function invariant
under permutation of coordinates, then for every zi,...,z, € I, which is monotonic decreasing
with respect to majorization relation, and every real m-tuple p = (p1,...,pm) such that, for every
i€{1,2,...,m} we have

0< P <P,=1,

then the following inequality holds

Proof. From (2.4.6) we infer the existence of Ay, A, - -+, Ap,—1 doubly stochastic matrices in M,, ,,(R)
such that

7y = A12q,

z3 = Aszo,

Hence, we have that

= (piln +p2A1 4+ +Dn1An_2-- Al + D Am—1- - A1) 21,

hence, we deduce that z < zq, based on the fact that the matrix p1 I, + poA1+-- -+ pn_14n_o--- A1+
PmAm—1--- A1 is doubly stochastic.

On the other hand, we have that

Zm = PmZm + (pl + - +pm71) Zm = PmZm +pm71Am71mel + (pl + - +me2) Zyp = ...
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= PmZm + Pm—1Am—1Zm—1 + - + P1Am—1- - A121.
Hence, we have that
PmZm + Pm—1Am—1Zm—1+ -+ p1Am—1--- A121 < p121 + p222 + - - + DinZm-

More precisely, if we choose in Lemma 2.4.1, x1 = p121, X2 = p2Z2,...,Xm = PmZm, Um =
Ly, Upn1=An_1, ....U1 = Ap_1--- A1, we get z,, < Z.

Thus, we just have proved that

Zm < Z < Z7.

Inspired from [115, Theorem 1.5.6.], f is convex and invariant under permutation of coordinates,
then by using [126, Theorem 5] we have that

f(zm) < f(2) < f(21),
hence, we infer the existence of an index [ such that
Fm) << fa) <T@ <) < < flm). (2.4.7)

Following the idea in the proof of [115, Theorem 1.5.6.], for any d € 9f(z), using (2.4.9), we have
f (sz‘zz) ~> pif (z)
i=1 i=1

-1

< Si((d,zi — ziga) — f(zi) + f(zit1))

=1

+5 ((d, 21 — 2) — f(z) + f(2))

+S141 (f(2) — f(zig1) — (d,Z — zy41))

m—1
+ Z 5'1‘+1 (f(z:) — f(Zit1) — (d, 2i — Zi11))

i=1+1
where S; = S, — S;.

Using (2.4.4)-(2.4.5) from Remark 13 we get that all the above terms are nonpositive real numbers

and the conclusion follows easily.

O

For the convenience of the reader we also present some details for the case of increasing sequences
with respect to the majorization relation.
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Theorem 2.4.3. If f : I — R is a convex function invariant under permutation of coordinates, then
for every zy1,...,2,m € I, which is monotonic increasing with respect to majorization relation, and
every real m-tuple p = (p1,...,pm) such that, for everyi € {1,2,...,m} we have

0< P <Pp=1,

then the following inequality holds

Proof. From (2.4.6) we infer the existence of Ay, Ay, ---, Ap,—1 doubly stochastic matrices in M,, ,,(R)
such that

Zmm—1 = Amzma

Zm—2 = Am—1Zm—1 s

zy = Aszs,
Z1 = AQZQ.
Hence, we have that
Z=p1Z1+ -+ DmZm (2.4.8)

= (plAQ A, +P2A3 A+ -pm—lAm + men) Zm,

hence, we deduce that z < z,, based on the fact that the matrix p;As--- A, + poAs--- Ay +
e o Pm—14m + pm I, is doubly stochastic.

On the other hand, we have that
z1 = p121 + (P2 + -+ Pm) 21 = 121 + p2Aaza + (p3 + - + Pm) 21

= =p1z1 + p2AszZo + -+ pmAa - ApZim,
It follows that

p1Z1 + p2Aozy + - -+ prAa - Az < 121 + P2z + -+ DinZm,

where we have used Lemma 2.4.1, for X1 = p121, X9 = p2Zo,..., X = PmZm, U1 = Iy, Uy =
Ay, ..., U, = As--- A, Hence, we get z; < z. Thus, we just have proved that

71 < Z < Zpy-

Inspired from [115, Theorem 1.5.6.], f is convex and invariant under permutation of coordinates,
then by using [126] we have

f(z) < f(2) < f(zm),

we infer the existence of an index [ such that

flz) <-- < f(z) < f(2) < f(zi1) < < f(2m) - (2.4.9)

Now, using the similar argument as in the proof of Theorem 2.4.2 the same conclusion holds.
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Example 2. Let us consider the following vectors in R™ which verify
Z1 <722 <" <Zp_1 = Zp,

where

By choosing the weights

n—1 1 1 n-—-1
(p17p2>"-pn): s T Ty ey T Ty )
n n n n

which can be nonpositive and verifies the hypotheses in Theorem 2.4.2. Hence, for any convex function
mwvariant under permutation of coordinates f : I — R, we have

f<n—1n—2 n—3 1 —3n2+7n—2>

n2 > n2 ' onp2 T2 2

n n

n—1 11 11 1
< n (f(nana7n7n>+f(07077O>1>>_nl§:;f(zl)

2.4.2 Sherman’s type inequalities with nonpositive weights

In this subsection we develop the result from the previous section for the case of nonpositive weights,
in different situations. The first step is introduce the weighted concept of majorization between two
n-tuples x = (z1,...,27), ¥ = (Y1,...,Ym), where z1,...,z; € I", y1,...,ym € I", with real weights
a= (a,...,a;) € R' (which can be nonpositive) and b = (by,...,by) € [0,00)™, where I is an interval
in R and m,[l > 2.

We define the concept of weighted majorization (x,a) < (y, b) by considering any matrix A = (ay;) €
M (R), verifying

0< AL <A =1, (1<k,i<m) (2.4.10)
where 4
Ap =0+ 4 oy (ke{l,2,...,m}) (1<k<m), (2.4.11)
such that l
bj =Y aiy, (j=1,...,m), (2.4.12)
=1
X; = f:yjaji, (1=1,...,0). (2.4.13)
7j=1

We can present now the extension of Sherman’s inequality in R", when the weights are allowed to
be nonpositive.
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Theorem 2.4.4. If
Xm < Xm—1 < -0 < X9 < X1. (2.4.14)

and let us suppose that conditions (2.4.10)-(2.4.13) are satisfied. Then, the following inequality

l m
D aif(xi) <Y bif(y))
i=1 j=1
holds for every convex function f : I"™ — R which is invariant under permutation of coordinates.

Proof. As in the proof of Theorem 2.4.2 we can deduce that

Xm<}7j-<X1 (j:1,...,m),

which means that we can use Jensen-Steffensen’s inequality and we obtain
m m

f(Z%iW) <D aufly;) (=10,
j=1 J=1

Taking into account (2.4.2) — (2.4.3) and applying Theorem 2.4.2 for each z;, i = 1,...,1, where
% = ZT:lpjij Dj = Qji, we get

l m

l
Yoaif (i)=Y aif | Yy
i—1 j=1

=1

2.4.3 The case of hy strongly convex functions

The second topic we address in this section is related to the study of a perturbed family of convex
functions by complete homogeneous symmetric polynomials with even degree, which are positive.

Inspired from the strategy used in [1, 2, 3, 30, 83, 15] we have the following result.

Theorem 2.4.5. (Jensen-Steffensen’s type inequality) Let C' > 0 and let I be an interval in R. If
f 1™ = R is hy strongly convex with modulus C' and invariant under permutation of coordinates, then
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for every monotonic sequence zi,...,2z, € I", as in (2.4.6), and every real n-tuple p = (p1,...,Pm)
such that, for everyi € {1,2,...,m}, 0 < P; < P,, =1 the following inequality holds:

where z is defined in (2.4.8).

Proof. As in the proof of Theorem 2.4.2 we can obtain that

Zy < Z < 77,

which means that g : I" — R, where g (z) = g (3., piz;) is well defined.

Using the convexity of the function g(-) = f(-)—chs(+), as in Definition of hy strongly convex function,
and applying Jensen-Steffensen’s inequality, we obtain

g < ipizi> < g;pig(zi).

Going back to f, we get

f(gjjp) - Ch(§p> < gw(zo ~ Chaf)

m

— Zplf(zl) — CzpihZ(Zi)v
i=1

i=1
or written differently

m

f(imm) < pif(zi) - C[gpihz(zi) — hy < gpmﬂ

=1 =1



CHAPTER 2. NEW MAJORIZATION RESULTS ON Hp STRONGLY CONVEX FUNCTIONST70

Now, inspired from [15, Theorem 2] we can treat the above last two terms as follows: for any

U; = Zf
k=1
and
m
u= piug,
i=1
we have the following identity
m m
_\2
sz (uz) - (u) = sz(uz ’U,)Q,
i=1 i=1

hence, it follows that

O

Using our extension of Sherman’s results (for nonpositive weights) we can deduce Sherman’s inequality
for hy strongly convex functions with modulus C.

Theorem 2.4.6. (Sherman’s type inequality) Let C > 0 and let I be an interval in R. Let z =
(z1,...,21), Y = (Y1,.--,Ym), where z1,...,2; € I", y1,...,ym € I" and let a = (ay,...,q;) € R and
b = (b1,...,bn) € [0,00)™ be such that (y,b) < (z,a). If in addition we assume that

Zip, = Zp—1 <+ < 7o < Z1. (2.4.15)

then for every f : I™ — R hy strongly convex with modulus C and invariant under permutation of
coordinates we have

l m l m
D bif(yi) <D af(z) = CD b Y ajiha(z; —yi).
i—1 i=1

i=1  j=1

Proof. From (2.4.2) — (2.4.3) and using Theorem 2.4.5 for each y;, i = 1,...,l, where y; = Zé-:l PjZj,
pj = i, we have

l l m
Z bzf (Yz) = Z bzf Z Z;0jg
=1 =1 7j=1
l m m
<) b (Z ajif (27) = C)_ ajiha (zj — i)
=1 J=1 J=1
l m l m
= Z bz Z Oéng (Z]) - C Z bz Z a]th (Zj - yl)
=1 gj=1 =1 j=1
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Hence, using that a; = 22:1 biaj; we get

l m l m
D obif (vi) < aif(z) —CY b ¥ ajiha (2 —yi) .
i=1 j=1

= i=1 j=1

2.4.4 Conclusions and applications

The point of departure in this subsection is given by the possibility to define the weighted concept
of majorization within a class of spaces with curved geometry (in which compare the the length of a
median of a triangle to the lengths of its sides).

Using a similar strategy as in the previous sections our future aim will be to prove that convex type
inequalities hold even in global NPC spaces, for some nonpositive weights. This could pe done taking
into account the following remarks and properties of this spaces.

Definition 2.4.2. A global NPC space is a complete metric space M = (M,d) for which the following
inequality holds true: for every pair of points xg,x1 € M there exists a point y € M such that for all
points z € M,

1 1 1
d*(z,y) < §d2(z,xo) + §d2(z,x1) - Zd2(w0, x1). (2.4.16)

Here "NPC” stands for "nonpositive curvature”. Global NPC spaces are also known as CAT(0)
spaces or Hadamard spaces. For more details, the interested reader may consult the excellent survey
of Sturm [163] (and also the books of Ballman [17], Bridson and Haefliger [32], and Jost [80]).

Not that in a global NPC space, each pair of points zg,x1 € M can be connected by a geodesic
(that is, by a rectifiable curve v : [0,1] — M such that the length of 7|4 is d(v(s),~(t)) for all
0 < s <t<1). Moreover, this geodesic is unique.

The point y that appears in Definition 2.4.1 is the midpoint of o and z1 and has the property

1
d(JUovy) = d(y,ﬂfl) = §d($0,931)-

An important role here is played by the inequality (2.4.16), which assures the uniform convexity of
the square distance. See Bhatia [25]. Every Hilbert space is a global NPC space. Its geodesics are the
line segments and y = %ﬂ In general, a Riemannian manifold is a global NPC space if and only
if it is complete, simply connected and of nonpositive sectional curvature. Besides manifolds, other
important examples of global NPC spaces are the Bruhat-Tits buildings (in particular, the trees). See
[32].

Definition 2.4.3. A set C C M is called convex if y([0,1]) C C for each geodesic v : [0,1] — M
joining the points v(0),~v(1) € C.

A function f : C — R is called convez if C is a convex set and for each geodesic 7y : [0,1] — C' the
composition @ oy is a convexr function in the usual sense, that is,

fOr(®) < (X =8)f(7(0)) + £ (v (1))
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for all t € [0,1].

The function f is called concave if —f is conver.

We remark that Jensen’s inequality works in the context of global NPC spaces (despite the fact that
the property of associativity of convex combinations fails). A probabilistic approach is made available
by the paper of Sturm [163]. The main ingredient here is the barycenter of a discrete probability
measures A = » ' | iy, is defined by the formula

1 n
bar(\) = arg min - \;d? Z,T).
O = argmin 5 3 Xz

In the case of Hilbert spaces, this coincides with the usual definition of barycenter in flat spaces, that
iS, E?:l )\11'1

Theorem 2.4.7. (The discrete form of Jensen’s Inequality). For every continuous convex function
[+ M — R and every discrete probability measure X =Y ;" | N\idz, on M, we have the inequality

Fbar(n) < 37 Af (@),
i=1

The result of Theorem 2.4.7 is a particular case of the integral form of Jensen’s Inequality, which was
first noticed by Jost [79] (and later extended by Eells and Fuglede [55]).

In what follows we shall deal with the relation of weighted majorization <, for pairs of discrete
probability measures. See [126], for an extension of the Hardy-Littlewood-Pélya Theorem to the
context of global NPC spaces.

Taking into account the barycenter of a discrete probability measures A = Y _" | Aid,,, which works in
the context of global NPC spaces only for positive weights (A;); with " ; \; = 1, our future aim is to
extend the above concept of barycenter to real weights, chosen in a similar way as in Jensen-Steffensen’s
inequality from this section.

The second future aim is related cu a relaxed concept of convexity, namely relative convexity. In
[118] we discuss the availability of Jensen’s inequality in a nonconvex context, in which we emphasize
the usefulness of the concept of point of convexity. Even in the case of spaces with a curved geometry
we have successfully introduced the point of convexity. In [124] we have discussed the meaning of the
relative convexity notion.

We briefly present here the main ideas which will be used to treat the case of nonpositive weights in
this context.

Definition 2.4.4. Let f: M — R be a continuous function. A point a € M is a point of convexity
of the function f if

fla) <D Xif (), (2.4.17)
=1

for every family of points x1, ..., x, in M and every family of positive weights A1, ..., Ay with > 7" | \i =
1 and bar (3., \ids,) = a.
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The point a is a point of concavity if it is a point of convexity for —f (equivalently, if the above
inequality works in the reversed way).

An example which illustrate the meaning of the above concept is offered by the function f(z) = ze®.
This function is concave on (—oo, —2] and convex on [—2, 00) (attaining a global minimum at z = —1).
Every point a > —1 is a point of convexity because the tangent line y = T'(z) at the point (a,ae?)
gives supporting line for the graph of the function. A simple computation show that

fla)=T(a) =T (Z )\,-:c,) = Z)\iT(xi) < Z Aif (i),
1=1 i=1 =1

for every x1,...,2, € Rand Ay,..., A\, € [0,1] such that > | \j =landa= 3 ;" | \iz; > —1.

Other interesting connections between the subdifferential of the function and the notion of relative
convexity can be found in [118]. More precisely, if a function admits a supporting hyperplane at a
point a, then a is a point of convexity. In other words, every point at which the subdifferential is
nonempty is a point of convexity. For other details, see for instance, [46, 82, 170, 171]. In this context,
another future aim is to put in the same context the existence of the point of convexity of a function
with the weakly or strongly convexity property. This could be done via the notion of subdifferential,
which is somehow connected with the modulus C from the definition of weakly or strongly convexity.
The choose of the optimal constant here is also another interesting purpose to be done.



Chapter 3

Jensen Steffensen’s inequalities on
spaces with curved geometry

3.1 On metric spaces of nonpositive curvature

In the first part of this chapter, we present some preliminary notions related to metric spaces of
nonpositive curvature ("NPC spaces”), but also a discussion of barycenters of probability measures
on such spaces. We will concentrate on analytic and stochastic aspects of nonpositive curvature. We
are inspired by [163].

3.1.1 Geodesic spaces

We say that a curve in a metric space (IV, d) is a continuous map p : I — N where I C R is some interval
and we define its length L4(p) as the supremum of Y, d(px,, pa,_,) Where Ag < A <--- < X, and
AQy .-y Ap E 1.

A curve is called geodesic if and only if

d(pu, pr) = d(pu, pv) + d(pu, pr),

for all p1,v, A € I with p <v < A. Or otherwise written, iff Ly(p|[,,n) = d(pv, pa) for all v, A € I with
v <A

In the sense of Reimannian geometry, that geodesics are only required to minimize locally the length
(i.e. the above holds true only if | v — A | is sufficiently small) whereas geodesics in our sense are
always globally minimizing the length.

A curve p: [a,b] — N connects the points y, z € N if and only if p, = y and p, = 2z and this implies
that La(p) > d(y, 2).

Definition 3.1.1. A metric space is called a length space (or inner metric space) if and only if for
all y,z € N we have
d(y, z) = inf La(p),

74
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where the infimum is taken over all curves which connect y and z. It is called a geodesic space if and
only if each pair of points y,z € N is connected by a curve p of length Lq(p) = d(y,z). This curve is
not required to be unique.

Proposition 3.1.1. A complete metric space (N,d) is a geodesic space if and only if ¥Yzp,z1 € N,
Jt € N such that

d(z0.1) = d(21, 1) = %(zo, ).

In this context, any point t € N with the above properties will be called midpoint of zy and z1.

Proof. Given zp,z1 € N, we obtain their midpoint 21 € N. Then the points z;/4 and z3/, are
obtained as midpoints of 29 and z; /5 or 21,5 and 21 respectively. Using this algorithm, we obtain the
points z) for all dyadic A € [0, 1] and obviously

d(zu, 27) = d(2u, 20) + d(20, 2)),

for all dyadic 0 < u < v < XA < 1. By completeness of N, it yields the existence z) € N for all A € [0, 1]
such that z : [0,1] — N is a geodesic. O

Remark 14. Note that a characterization in terms of ”approximate midpoints” similar to Proposition
3.1.1 holds true for length spaces:

A complete metric space (N,d) is a length space or geodesic space if and only if for all zp,z1 € N
and € > 0 (or for e = 0 respectively) there exists y € N such that

1
d2(zo,y) + dz(zl,y) < idz(zo, 21) + €.

Let (N,d) be a geodesic space.

Definition 3.1.2. A set Nog C N is called convez iff p([0,1]) C Ny for each geodesic p : [0,1] — N
with po, p1 € No. A function f: N — R is called convex iff the function fop:[0,1] — R is convex
for each geodesic p : [0,1] — N, that is iff VA € [0, 1]

fox) < (1 =X)f(po) + Af(p1)-
Proposition 3.1.2. For f: N — R define its epigraph
Epiy ={(z,p) e N xR: f(z) < p} C N xR.

Then

(i) f is convex if and only if Ny is convex.

(i1) f is lower semicontinuous if and only if Ny is closed.

Proof. (i) Let Ny a subset of the space N = N x R with the metric

d((=, 1), (9 0)) = ((z,9)4 | 1 — v )2,
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Thus, 5 : [0,1] — N is a geodesic if and only if H(A) = (p(\), co + c1A) with a geodesic p : [0,1] — N
and cg,c; € R. Further consider p be a geodesic with p(0), p(1) € Ny, that is with

fop(0)<cpand fop(l)<cy+eci.
Convexity of f: N — R implies convexity of fo p:[0,1] — R and this in turn
fop\) <co+ )
or, in other words, f(A) € N ¢. This provides the convexity on Ny.
Conversely, we assume that Ny is convex. Let p : [0,1] = N be any geodesic. Choose
co = 10 p(0),c1 = £ 0 p(1) — f o p(0) and HN) = (p(N), o + c1)).
Then p(0), p(1) € Ny and thus also p € Ny. Previous results states that
fopA) <co+ar=(1—=A)fop(0)+Afopl),

for all A € [0,1]. That is, fop : [0,1] — R is convex for each geodesic p : [0,1] — N and thus
f+ N — R is convex.

(ii) Ny is closed <= (2, = 2,2, € Ny = 2€ Ny) <= (2n = 2, in > 0 = f(2) < p) <= f
is lower semicontinuous.

Definition 3.1.3. A function f : N — R is called uniformly convex if and only if there exists a
strictly increasing function n: Ry — Ry such that for any geodesic p : [0,1] — N

Florj2) < 5 (o) + F(p1) = n(d(po, 1))

A function f is called strictly convex iff for any geodesic p : [0,1] — N with py # p1

Florj2) < 5 (F(oo) + F (o))

Proposition 3.1.3. Let f : N — R be a uniformly convex, lower semicontinuous function on a
complete geodesic space (N,d). Then there exists a unique minimizer t € N, i.e. a unique pointt € N
with f(t) = infyen f(w). We write

t= i .
arg min f(w)

Proof. (i) Existence: Let t, be a sequence of points in N with lim,, f(¢,) = inf; f(¢) := « and let ¢,
the midpoint between t,, and ;.

For n, k — oo we have that

@ S Fltng) < 3 (t0) + 3 F0) = 0(d(tn,01).

Hence, d(tp,tr) — 0 for n,k — oo. In other words, (¢,), is a Cauchy sequence, so there exists
t* = lim,, o t, € N since N is complete. Moreover, f(t*) = inf, f(¢) by lower semicontinuity of f.

(77) Uniqueness: Assume that f(to) = f(t1) = inf; f(t) = « and tp # t;. We get the contradiction
a< f(t) < %oz + %a, for ¢1 the midpoint between ty and ;. O
2 2
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Remark 15. For the uniqueness of the minimizer it is suffices to require that f is strictly convex. If
N is compact then for the existence of the minimizer it is suffices to require that f is convex and lower
SemMLCONTINUOUS.

Definition 3.1.4. A geodesic space (N,d) is called doubly convez if and only if the function d :
(z,y) = d(z,y) is convex on N x N or, in other words, iff the function X\ — d(px,ny) is convex for
each pair of geodesics p,m : [0,1] — N. It is called strictly doubly convex if and only if d is strictly
conver on N X N.

Remark 16. (i) In a doubly convex geodesic space, any two of its points are joined by a unique
geodesic and this geodesics depends continuously on its endpoints.

(i1) If a geodesic space is locally doubly convex and simply connected then it is doubly convex [55, 64].

Let (M, M) be a measurable space and (N,d) be a metric space. A map v : M — N is called
measurable if and only if it is measurable with respect to the given o-field M on M and the Borel
o-field B(N) on N, i.e. iff v=}(N') € M for all N' € B(N). Note that for the latter it suffices that
v~ (N') € M for all open N' C N.

3.1.2 Global NPC spaces

Inspired by Sturm [163], we present an introduction to metric spaces of nonpositive curvature, NPC
spaces, with emphasis on analytic and stochastic aspects of nonpositive curvature. In this context, we
use the explicit estimates for the distance function, we do not deal with triangle or angle comparison
and we do not introduce the tangent cone or the space of directions.

For the many and deep geometric aspects we refer to the huge literature on NPC spaces. The whole
development started with the investigations of A. D. Alexandrov [7] and Yu. G. Reshetnyak [147] and
was strongly influenced by the work of M. Gromov [63]. Recently, there appeared various monographs
devoted exclusively to NPC spaces: [17], [32] and [80]. Also the monographs [16, 33, 55] contain much
material on this subject. Moreover, we recommend the articles [6, 79, 87].

Definition 3.1.5. A metric space (N,d) is called global NPC space if it is complete and if for each
pair of points zg,z1 € N there exists a point y € N with the property that for all points t € N we have
that

P2t y) < %dz(t,z()) + %dQ(t, 2) - idQ(zo,zl). (3.1.1)

In this context, "NPC” means nonpositive curvature. Global NPC spaces are also called Hadamard
spaces. Property (3.1.1) is called the NPC inequality and it can be weakened.

Remark 17. A complete metric space (N,d) is a global NPC space if and only if for all zy,z1 € N
and € > 0 there exists y € N such that for all t € N we have that
1 1 1
d*(t,y) < §d2(t7 20) + §d2(t»2’1) - 1032(2’0, 21) + €. (3.1.2)

Proposition 3.1.4. If (N,d) is a global NPC space then is a geodesic space. Even more, for any pair
of points zy,z1 € N there exists a unique geodesic z : [0,1] — N connecting them. For \ € [0,1] the
intermediate points zy depend continuously on the endpoints zg, z1. Finally, for any t € N we have

d?(t,zy) < (1= N)d2(t, 20) + Ad>(t, z1) — A1 — N)d? (20, 21). (3.1.3)
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Figure 3.1: NPC inequality

For the convenience of the reader we present the proof given in [163].

Proof. (i) Choosing t = zp or t = z; in (3.1.1) yields

d(zo,21)-

N | =

1
d(20,21/2) < §d(z0,zl) and d(z2,21) <

Whence, z; is a midpoint and (N, d) is a geodesic space. Choosing ¢ to be any other midpoint of zy
and z; yields d(¢, z; /2) = 0. That is, midpoints are unique and thus also geodesic are unique.

(ii) Given any geodesic z : [0,1] — N it suffices to prove (3.1.3) for all dyadic A € [0, 1]. It obviously
holds for A = 0 and A = 1. Assume that it holds for all A = k27" with k£ = 0,1, ...,2". We want to
prove that then (3.1.3) also holds for all A = k2-("+1) for all A\ = k27" with k = 0,1,...,2"*!. For
even k this is just the assumption. Fix A\ = k2~ (1 with an odd k and put A\ = 2=+ Then by
(3.1.1) we have that

1 1 1
d*(t, 21/2) < §d2(t, Zx-ax) + §d2(t, ZALAN) — ZdQ(ZA—AAa ZA+AN)
and by (3.1.3)
d?(t, 2aean) < (1= AF AN (t, 20) + (A £ AN)d?(t, 21) — (1 — A F AN (A £+ AN)d? (20, 21)

Thus
d?(t, zy) < (1 — N)d?(t, z0) + Md3(t, z1)

1

—(AN)? 51— A= AN+ AN - %(1 — A+ AN — AN [d?(20, 21)

= (1= N)d%(t, 20) + M (t, z1) — M1 — N d? (20, 21).
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Figure 3.2: Geodesic comparison

(iii) Now let 2,y : [0,1] — N be two geodesics. Then applying (3.1.3) twice yields
d*(zx,90) < (1= N)d?(20,yn) + Ad*(21,92) — M1 — N)d*(20, 21)
< (1= X)?d*(20,50) + Nd*(21,11)

FAL = N[ (20, 1) + d2(21, y0) — d2(20, 21) — d2(yo, y1)]-

Obviously, the right hand side converges to 0 if yo — 29 and y; — 21, and thus y) — z), that is z)
depends continuously on zp and z;. O

Corollary 5. (Geodesic Comparison). Let (N, d) be a global NPC space, p,n : [0,1] — N be geodesics
and X € [0,1]. Then

d*(px,mn) < (1= Nd*(po,mo) + Ad*(p1,m) — A(L = N)[d(po, p1) — d(no, m)* (3.1.4)

and
d(px,mn) < (1= N)d(po,no) + Ad(p1,m).

Proof. We use what we demonstrated in part (7ii) of Proposition 3.1.4 and we have that
d*(px,mn) — (1 = A)2d*(po, m0) — A*d*(p1.m)

< AL = N)[d*(po, m) + d*(p1,m0) — d*(po, p1) — (110, ).

By quadruple comparison, the right hand side is
<A1 =N [d*(po,m0) + d*(p1,m)

—p(d(po,m0) — d(p1,m))* = (1 = p)(d(po, p1) — d(no,m))?]
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for each p € [0,1]. For p = 0 this yields the Reshetnyak’s quadruple comparison and for p = 1 it

yields
d*(prsmn) < (1= N)d*(po,m0) + Ad?(p1,m1) — ML — N)[d(po, m0) — d(po,m)]?

= [(1 = N)d(po, no) + Ad(p1,m)]*.

O

Inequality (3.1.4) assert that d is doubly convex, i.e. (z,y) = d(z,y) is a convex function on N x N.

We have some obvious consequences:

(i) For each t € N the function z — d(z,t) is convex; in particular, all balls B,(t) C N are convex.
(13) Geodesics depend continuously on their endpoints in the following quantitative way:
doo (1, ) = sup{d(no, po), d(n1, p1)},
where for any curves 7, p : [0,1] = N we put doo (7, p) := sup{d(nx, gx) : A € [0,1]}.
(7i1) N is contractible and, in particular, simply connected.

Proposition 3.1.5. (Convex Projection).

(1) For each convez closed set K C N in a global NPC space (N,d) there exists a unique map
7k : N — K ("projection onto K”) with

d(rg(t),t) = Jgﬂd(w’t) (t € N);

(ii) mr is "orthogonal”:
d2(t,w) > d*(t, 7 (1)) + d*(7x(t),w) (t € N,w € K);

(ii1) g is a contraction:
d(rg(t), 7k (w)) < d(t,w) (t,w € N).

Proof. (i) Fix t € N and a closed convex set K C N. Then K is a global NPC space and the function
f:K — R, 2 — d?(zt) is continuous and uniformly convex on K. Hence there exists a unique

minimizer in K.

(ii) Let A — wy be a geodesic joining wp := 7k (t) and wy := w. Then wy € K for all A € [0, 1] by
convexity and closedness of K. Hence, by the NPC inequality

d*(mi(t), 1) < d*(wy,t) < (1= N)d*(mx(2), 1) + Ad*(w, t) — AN(1 = N)d*(mx (t), w)
and therefore
d?(m(t),t) + (1 = N)d?(mx (1), w) < d*(w, t).
(iii) Put ¢ = 7wk (t), w' = g (w). Then (i7) and quadruple comparison imply
d*(t,w) + d*(w,w') + d*(w', ') + d> (', 1) > d*(t,w') + d* (', w) > d*(t,1) + d* (w,w') + 2d°(w', 1),

which yields the claim. O
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Figure 3.3: Convex projection

The important fact here is the existence of a unique projection without assuming any kind of com-
pactness of K.

Remark 18. (i) Given any subset A C N in a global NPC space (N,d), there exists a unique
smallest convez set C(A) containing A, called convex hull of A. It can be constructed as C(A) =
Un2 o An where Ay := A and for n € N, the set A, consists of all points in N which lie on
geodesics which start and end in A,_1.

(17) Given any bounded subset A C N in a global NPC space (N, d) there exists a unique closed ball
of minimal radius which contains A. In other words, there exists a unique point z € N (the
circumcenter of A) such that

r(z,A) = tiélj{[r(t, A),

where 1(t, A) := sup,ec4 d(t,y). This is an immediate consequence of Proposition 3.1.3 since the
function t — r%(t, A) is uniformly conver.

3.1.3 Examples of global NPC spaces

This subsection, inspired by Sturm [163] gives some examples of global NPC spaces. The main
examples, in our context, are manifolds, trees and Hilbert spaces. Other examples are cones, buildings
and surfaces of revolution. New global NPC spaces can be built out of given global NPC spaces as
subsets, images, gluings, products or L?-spaces.

Proposition 3.1.6. (Manifolds). Let (N,d) be a Reimannian manifold and let d be its Reimannian
distance. Then (N,d) is a global NPC space if and only if it is complete, simply connected and of
nonpositive (sectional) curvature.

Besides manifolds, the most important examples of NPC spaces are trees, in particular, spiders.
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Figure 3.4: The 5-spider

Example 3. (Spiders). Let K be an arbitrary set and for each i € K let Ny = {(i,pn) : p € Ry} be a
copy of Ry (equipped with the usual metric). Define the spider over K or K-spider (N,d) by gluing
together all these spaces N;, i € K, at their origins, i.e.

N ={(i,p) :i € K,u € Ry}/ ~ where (i,0) ~ (4,0)(V1,7)

and
I —v| ifi=j
Il + v, else.

d((i, ), (4,v)) = {

The rays N; can be regarded as closed subsets of N. Any two rays N; and N; with i # j intersect at
the origin o := (3,0) = (4,0) of N.

The K-spider N depends (upto isometry) only on the cardinality of K. If K = {1,...,k} for some
k € N then it is called k-spider. It can be realized as a subset of the complex plane

l
{,u'e:cp<k27ri> eC:peRy,le {1,...,k}},

however, equipped with a non-Euclidian metric. If k =1 or k = 2 then it is isometric to Ry or R,
respectively. The 3-spider is also called tripod.

Proposition 3.1.7. (Trees). Each metric tree is a global NPC' space.

Proof. We have to prove the NPC inequality (3.1.1) for each triple of points zg, z1,t € N. Without
restriction, we may replace N by the convex hull of these three points which is isometric to the convex
hull of three points in the tripod. That is, without restriction N is the tripod.

Firstly, consider the case where zg, z1, t lie on one geodesic p : I — N. Then p is an isometry between
I C Rand p(I) C N. Since I is globally NPC, so is p(I). Actually, I and thus p(I) are even "flat”,
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i.e.
(1, 21 0) = Sd2(t 20) + ~d2(t, 1) — (20, 1)
) <1/2 2 y <0 2 ) 4 P ’

for all zg, 21,t € p(I) and with z; /o being the midpoint of zg, 21.

Secondly, consider the non-degenerate case zo = (i, i), 21 = (j,v) and t = (k, ) with p-v- X > 0 and
different i, j,k € {1,2,3}. Assume without restriction y > v and put ¢' = (j, ). Then 2, 212 € N;
and t' € N;. The points 2o, 21, t lie on one geodesic. Therefore, by the previous considerations

2041 Lo Loy Lo
d*(t',z12) = 5% (t', z0) + 3@ (t' 21) — 1% (20, 21)-

Moreover, d(zo,t) = d(z0,t') and d(21/9,t) = d(21/,t') whereas d(z1,t) > d(21,1'). Hence, finally,

1 1 1
d*(t, z1p9) = d*(t', 21)0) = 2d2(t’,z0) + *dQ(t', 21) — ZdQ(Zo,Zl)
1 2 Lo
id (t Zo) + d (t Zl) 4d (20,2’1).

Proposition 3.1.8. (Hilbert spaces).

(i) Each Hilbert space is a global NPC' space.
(ii) A Banach space is a global NPC space if and only if it is a Hilbert space.

(7i1) A metric space is (derived from) a Hilbert space is and only if it is a nonempty, geodesically
complete global NPC' space with curvature > 0. One possible (of many equivalent) definitions for
the latter is to require that in (3.1.1) also the reverse inequality holds true.

Proof. (i) Choosing z; /9 = = 1(20 + 21) yields equality in (3.1.1):

2
1 1 1
DT =l a0l + 5t — a1 — a0 — =l

-

(74) Assume that N is a Banach and global NPC space. Given zy, 21 € N, one (and hence the unique)
midpoint is 21 /5 = 20t21 Then choosing t = 0 in (3.1.1) yields

|20 — 21\2 + |20 + 21\2 < 2|zo\2 + 2|21\2,

which is a ”parallelogram inequality”. Replacing zg and z; in this inequality by zo + 21 and z; — 21,
respectively, yields the opposite inequality and thus proves the parallelogram equality.

(#47) The "only if”-implication is easy. For the ”if”-implication fix an arbitrary point o € N. Then
for each z € N there exists a unique geodesic z : R — N with zg = 0 and z; = z. Using these geodesics
we define a scalar multiplication by -z := 23 (V8 € R,z € N), an addition by z + y := midpoint of
2-zand 2-y (Vz,y € N), and an inner product by

1
<Zay> = §(d2(z7y)—d2(o,z)—d2(o7y)) (VZ,yEN).
For details, see [87]. O

Lemma 3.1.1. (Subsets). A subset Ny C N of a global NPC space N is a global NPC space if and
only if it is closed and conver.
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3.1.4 Barycenters on global NPC spaces

Inspired by Sturm [163], we present some theoretical aspects related to barycenters on global NPC
spaces.

Let (IN,d) be a complete metric space and let P(N) denote the set of all probability measures p

n (N,B(N)) with separable support supp(p) C N. For 1 < 6 < oo, P’(N) will denote the set of
p € P(N) with [d?(z,y)p(dy) < oo for some z € N, and P>(N) will denote the set of all p € P(N)
with bounded support. Finally, we denote by Py(N) the set of all p € P(N) of the form p = % o0z
with suitable z; € N. Here and henceforth, ¢, : A — 14(z) denote the Dirac measure in the point
z € N. Obviously,

Po(N) C P>(N) c PY(N) c PL(N).

For ¢ € P(N) the number var(q) := infien [y d*(t,2)q(dz) is called variance of g. Of course, ¢ €
P2(N) if and only if var(q) < oc.

Given p,q € P(N) we say that v € P(N?) is a coupling of p and ¢ iff its marginals are p and ¢, that
is, iff VA € B(N)
Y(A x N) =p(A) and y(N x A) = q(A). (3.1.5)

One such coupling ~ is the product measure p ® gq.
Definition 3.1.6. We define the (L'-) Wasserstein distance or Kantorovich-Rubinstein distance d"
on PL(N) by
d"V(p,q) = inf {/ / d(z,y)y(dzdy) : v € P(N?) is coupling of p and q}.
NJN

Proposition 3.1.9. Let (N,d) be a global NPC space and fixy € N. For each q € P(N) there exists
a unique point t € N which minimizes the uniformly convex, continuous function t — fN[dQ(t,z) —
d*(y, 2)|q(dz). This point is independent of y; it is called barycenter (or, more precisely, d>-barycenter)
of q and denoted by

b(q) = arg mln/N[dz(t, z) — d*(y, 2)]q(dz).

teN
If g € P?(N) then b(q) = arg minge v d?(t, 2)q(dz).

Proof. Let F,(t) = [[d*(t,z) — d*(y, 2)]q(dz). Then
Byt = Fy(0) = [[80.2) ~ (y.2)la(dz)
is dependent of t. Moreover, |F,(t) < oco| since

(1)) = ] [ fat.2) ) [ 2) + (. 2t

<dtty) | /N dtt o) + [ dty.2yatas)|

The uniform convexity of t — d?(t, ) as stated in Proposition 3.1.4 implies that ¢t — F,(¢) is uniformly
convex: For any two points tg,t1 € N let A — t) denote the geodesic. Application of (3.1.3) gives

Fy(t) = / (d2(ty, 2) — d(y, 2)]g(d2)
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< (-8 [ldPt0,2) - Py 2)la(dz) + ) [l (t1,2) ~ P 2laldz)
—A(1 = N)d?(tg, 1)
= (1= N)E,(to) + AF,(t1) — A(1 — N)d*(to, t1).

Moreover, continuity of t — F,(t) is obvious from

RO = R0 < [ 1(2) = 2l

According to Proposition 3.1.3, uniform convexity and lower semicontinuity of Fj, implies existence
and uniqueness of a minimizer. O

Proposition 3.1.10. (Variance Inequality). Let (N,d) be a global NPC space. For any probability
measure ¢ € PY(N) and for allt € N:

/N (d2(t, 2) — d2(b{q), 2)]a(dz) > d2(1, b(g)). (3.1.6)

Proof. Given g and t, apply the estimate from the previous proof with ¢; := t, ¢y := b(q) and y := b(q).
The fact that b(q) is minimizer yields

0 < F(ty) <0+ X F(t) — M1 = N)d%(t, bq)).

That is, for all A > 0
/N (d2(t,2) — d2(b(q), 2)]a(dz) > (1 — Nd2(t, b(g)).

For A — 0 this yields the claim. O

Now, we want to present another natural way to define the ”expectation” EY of a random variable
Y is to use generalization of the law of large numbers. This requires to give a meaning to % Yo, Y,
Our definition below only uses the fact that any two points in N are joined by unique geodesics. Our
law of large numbers for global NPC spaces gives convergence towards the expectation defined as
minimizer of the L? distance.

Definition 3.1.7. Given any sequence (y;)icn of points in N we define a new sequence (vp)nen of
points v, € N by induction on n as follows:

1 1
v =y and vy = |1 — = Jvp—1 + —Un,
n n

where the RHS should denote the point py;, on the geodesic p : [0,1] — N connecting py = vp—1 and
p1 = Yn. The point v, will be denoted by %Z;me y; and called inductive mean value of y1,...,Yn.

ﬁ
i=1,..

Note that in general the point %Z nYi will strongly depend on permutations of the y;.

Theorem 3.1.1. (Law of Large Numbers). Let (Y;)ien be a sequence of independent, identically
distributed random variables Y; € L?(2, N) on a probability space (Q, A,P) with values in a global
NPC space (N,d). Then

1 —
- Z Y; = EY7 for n — oo,
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in L?(Q, N) and in probability (*weak low of a large numbers”).
If moreover Y; € L*(Q, N) then for P-almost every w €

1
— Yi(w) = EY; for n — oc.
n

Finally, we will give various characterizations of nonpositive curvature in terms of properties of
probability measures on the spaces. For instance, the validity of a variance inequality turns out to
characterize NPC spaces. Similarly, an inequality between two kind of variances as well as a weighted
quadruple inequality.

Theorem 3.1.2. Let (N,d) be a complete metric space. Then the following properties are equivalent:

(1) (N,d) is a global NPC space.

(ii) For any probability measure q € P*(N) there exists a point t, € N such that for allt € N
[ @t2ad) = et + [ g 2ald), (3.1.7)
N N
(#ii) For any probability measure ¢ € P(N)
1
varle) < 5 [ [ e patdz)ady).
NJN

(tv) (N,d) is a length space with the property that for any z1, 22, 23,24 € N and v, A € [0, 1]
I/(l — I/)dQ(Zl, 23) + )\(1 - )\)dQ(ZQ, 24)
< v (21, 22) + (1 — V)Ad? (22, 23) + (1 — v) (1 — N)d?(23, 24) + (1 — N)d? (24, 21)

The proof will show that in (ii1) it suffices to consider probability measures q which are supported
by four points and in (iv) it suffices to consider A = %

Proof. (i) = (ii) : We use corollary 3.1.6.

(11) = (7): Given points pg, p1 € N and A € [0, 1], choose the probability measure ¢ = (1 —X)d,, +
A0, and denote the point t; by py. Then (i) implies for all t € N

(1= Nd2(t, po) + Ad>(t, p1) = (1 = A)d%(pa, po) + Ad*(px, pr) + d*(p, 1)
> (1= X)Ad*(po, pr) + d*(pas t),
where the last inequality is a simple consequence of the triangle inequality. This proves ().

(id) = (iit): If var(q) = oo then [y d?(z,y)q(dz) = oo for all y € N and the claim follows.
Therefore, we may assume var(q) < co. In this case, the claim follows from integrating (3.1.9) against

q(dt).

(1it) = (w): Let po,p1 be any two points in N and € > 0. Choose the probability measure
q = 30y, + 36,,. Then (iii) implies that there exists a point t € N with

1
d(t, po) + d*(t, p1) < §d2(Po,pl) + €.
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According to Remark 14, this already implies that (N, d) is a length space.

To see the second claim, choose
q:%p@fwm@+u—yw%+u—AWM.
Then for each € > 0, (i%i) implies that for suitable t € N
épnﬂ@h@y+u—unf@%%)+a—yxy—nf@&@)

(1 = N d*(24, 21) + v(1 — v)d? (21, 23) + M1 — N)d*(22, 24)] + €

> [vd?(t, z1) + A2 (t, z2) + (1 — v)d?(t, z3) + (1 — N\)d?(t, 24)]

| =

> L= )z, 25) + ML~ N (2, 2)]

where again the last inequality is a simple consequence of the triangle inequality. Since this holds for
any € > 0 it proves the claim.

(iv) = (i): The fact that (N,d) is a length space implies that, given pg, p1 € N and v > 0, there
exists y € N such that

1
d*(po,y) +d*(p1,y) < 5d*(po, p1) + %,
For arbitrary ¢t € N, apply (iv) to z1 =t,20 = p1,23 = y,24 = pp and A = % It yields
9 |28 vV oo 1—-v 4 1-v , 1 5
v(1 —v)d*(t, px) < 54 (t,p1) + 5 (t, po) + — ¢ (Y, p1) + — ¢ (Y, po) — 1% (po, p1)

2

v v v v
< —d*(t —d%(t, po) — =d? —(1-v).

Dividing by v and the letting v — 0 this yields the claim.

Proposition 3.1.11. (Hilbert spaces). If N is a Hilbert space then for each q € P*(N)

b(g) = /N 2q(dz)

in the sense that

(b(a), ) = /N (. )a(dz) (yeN).

Note that this identity is true for probability measures. Let m be a measure on (N,B(N)) with 0 <
m(N) < co. Then the barycenter b(m) of m can be defined as before by

b(m) = arg ?éi]{}/N[dQ(t, z) — d*(0, 2)]m(dz),

which yrelds
1

b(m) = m(N)/sz(dz)
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Proof. Recall that b(q) is a unique minimizer of

Fito [ @02 = 20.20ad) = [ == = |2 a(dz).

Hence, t = b(q) if and only if

FF(+ o =2 [ (ot = Dad) =0,

€

for all y € N. O

Recall that every separable Hilbert space is either isomorphic to some Euclidian space R¥ or to the
space [2. In other words, it is isomorphic to &);cx R with a finite or countable set K. By the preceding
b(q) = (b(ai))iex With b(q;) = [ 2qi(dz) = [, ziq(dz) where z; and ¢; denote the projection of z and
g, respectively, onto the i-th factor of N.

Before studying arbitrary trees, we will have a look on spiders. Let K be an arbitrary set and N be
the corresponding K-spider. Given ¢ € P!(N) we define numbers

vilg) = /N o, Jafdz),  bila) = wi(a) - ;vﬂq)

for i € K. (The point b;(q) is the usual mean value of the image of ¢ in R in NV; is identified with R
and all the other N; are glued together and identified with R_.) Note that b;(¢) > 0 for at most one
1€ K.

Proposition 3.1.12. (Spiders). If bi(q) > 0 for some i € K then b(q) = (i,bi(q)). Otherwise,
b(q) = o.

Proof. Fix q and i. If b(q) = (i,1p) for some vy > 0 then v — F(v), where

FO) = [ @) 2ad) = [ w=dio.2)Pat) + 3 [ dio,2)Patde)
i ji N

attains its minimum on ]0, co[ in v = 1. The latter implies

0= 37 n) = [ (- d0. e+ Y [ 0+ d0,2))a(02)

i i
= —vi(a) + ) vi(g) = vo — bi(g),
J#i
and thus vg = b;(q). Similarly, b(q) = o implies F’(0) > 0 and thus 0 > b;(q). O

Remark 19. The k-spider has the following remarkable property:

Let p = Zle a; -pi € PL(N) be a convex combination of p; € P(N;),i = 1,...,k, for suitable c; > 0
with Zle a; =1 and put p = Zle i - Op(p,)- Then
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Indeed, with the notations from above

vi(p) = /N d(o,2)p(dz) = a; - d(o,b(p;)) = /N d(o, z)pi(dz) = vi(p),

for each i and hence the claim follows. Here the crucial point is that each p; is supported by a flat
space Nj.

3.1.5 Jensen’s inequality and L' contraction property

Note that throughout this subsection (N, d) will always be a global NPC space.

Proposition 3.1.13. If a probability measure ¢ € P*(N) is supported by a conver closed set K C N
then its barycenter b(q) lies in K. In particular, if supp(q) C B(2) then b(q) € B,(2).

Proof. Assume that b(q) ¢ K. Then by Proposition 3.1.5

/[dZ(b(Q)aZ) —d*(y, 2)]q(dz) > /[d2(7TK(b(Q))aZ) — d*(y, 2)]q(dz)

which contradicts the minimizing property of b(q). O]

Theorem 3.1.3. (Jensen’s inequality). For any lower semicontinuous convez function f : N — R
and any q € PY(N)

F0@) < [ Fataz),
N
provided the RHS is well-defined.

The above RHS is well-defined if either [ fTdg < oo or [ f~dg < co. In particular, it is well-defined
if f is Lipschitz continuous.

If f fdg < oo is well-defined then in Jensen’s inequality we may assume without restriction that f is
bounded from below and [ |f|dg < co. Indeed, the assumption implies that [ fdg = limg_,oo [ frdg
with f := f V (—k) being bounded from below and convex. Furthermore, [ fTdg = co would imply
[ fdg = co in which case Jensen’s inequality is trivially true.

Inspired by [163], we will present two entirely different, elementary proofs.
Proof. (First proof following [55]). Given f and ¢ as above, let N = N x R and Ny ={(z,)) € N :
f(z) < A} which is a closed convex subset of the global NPC space N.

Put f: N > N, z — (z,f(z)) and let ¢ =g o f~! be the image of the probability measure ¢ under
the map f. Without restriction, we may assume [y |f(z)|¢(dz) < co. Then f € P'(N) since for
t=(t)NeN

[ 2 < [ ez + 13- £)ade) < oo
N N

@) = (00a), [ 71ata2))

Moreover, supp(g) € Ny; hence we have that b(¢) € Ny. That is, f(b(q)) < [y f(2)q(dz). O

We have that
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Proof. (Second proof). Now for simplicity assume ¢ € P?(N) and [y f?(z)q(dz) < oo. The general
case follows by an approximation argument. Choose a probability space (£2,.4,P) and an iid sequence
(Y;); of a random variables Y; : Q@ — N with distribution Py, = ¢. Put

Zi = f(Yi)
1 —
i=1,...,n
1
T, = — Z;.
n

=1

Then by the weak law of large numbers (for N-valued and for R-valued random variables, respectively)

Sp, — EY; = b(q), TnHEf(Yl):/qu

in probability. Further, we claim that
f(Sn) < T,.

Indeed, this is true for n = 1 and follows for general n by induction:

f(SnH):f( n sn+1Yn+1>

n+1 n+1
< f(S0) + —— (Y1)
n+1 n+1
< & Th + ! Zn+1 = Tn+1
n+1 n+1 '

where we only used the convexity of f along geodesics. Therefore, by lower semicontinuity of f

£(0(a)) < limint £(S,) <liminf T, = [ fdy

n—o0
O]
Theorem 3.1.4. (Fundamental Contraction Property), For all p,q € P(N):
d(b(p), b(q)) < d" (p,q). (3.1.8)

Proof. Given p,q € PY(N) consider ¢ € P}(N?) with marginals p and g. Then b(¢) = (b(p), b(q)).
Thus Jensen’s inequality with the convex function d : N2> — R yields

d(b(p), b(g)) = d(b(@)) < / d(2)o(dz2).

N2
Therefore, d(b(p),b(q)) < dV (p, q). =

Example 4. (Barycenter Map of Es-Sahib & Heinich). Let (N,d) be a locally compact, global NPC
spaces. Then one can define recursively for each n € N a unique map By, : N™ — N satisfying

(Z) Bn(zl, .. .,2’1) = Z1,
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(”) d(ﬁn(zlv s 7Zn)7 ﬁn(ylv cee yn)) < % Z?:l d(zia yi)7

(Z’LZ) Bn(zl, ey Zn) = Bn(éla “. ,Zn) where .Cf?i = Bn_l(zl, ey Bi—15Ri41y - - - ,zn).
This map is invariant under permutation of coordinates and satisfies

d(t, Bz, ) < %Zd(t, %) (teN)
=1

3.1.6 The integral form of Jensen’s inequality

We want to extend Jensen’s inequality to the general framework of finite measure spaces. Note that
this subsection is inspired from [116].

Remember that a finite measure space is any triplet (£2, X, 1) consisting of an abstract nonempty set
Q, a o-algebra ¥ of subsets of Q2 and a o-additive measure p : ¥ — R4 such that p(2) > 0. We can
reduce the study of finite measure spaces to that of probability spaces, characterized by the fact that

() =1 by replacing p with p/p(€2).

Remark 20. The language of traditional measure theory is slightly different from that of measure-
theoretic probability theory. In the books of probability theory we find the notation (Q,3, P) for a
probability space consisting of a sample space €2, a o-algebra ¥ of events (viewed as subsets of ) and
a probability measure P : ¥ — R. Note that in the probabilistic context, the real measurable functions
X : Q = R are called random wvariables. Their definitory property is that X~ '(A) € ¥ for every
Borel subset A of R. Remark that, in probability theory, an important point is the use of the notion
of independence.

Jensen’s inequality gives us two important concepts that can be attached to a finite measure space
(€, 3, u): the integral arithmetic mean and the barycenter. The integral arithmetic mean or the mean
value of a u-integrable function f : ) — R is defined by the formula

Mi(f) = M(lm /Q £(2)du(z).

This number is also called the expectation or expected value of f and is denoted E(f). The expectation
generates a functional E : L'(u) — R having the following three properties:

(i) E(af +Bg) = aE(f) + BE(g), (Linearity);
(#4) f >0 implies E(f) > 0, (Positivity);
(7it) E(1) =1 (Calibration).

We introduce the expectation of a real-valued function f € L'(x) using the Riemann-Stieltjes integral
and the key ingredient is the cumulative distribution function of f, which is defined by the formula

F:R—1[0,1, F(2)=p{w: fw)<z});
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on several occasions we will use the notation F; instead of I, to specify the integrable function under
attention.

Remark that, this function is increasing and its limits at infinity are lim,, o F(z) = 0 and
lim, ,o F(2) = 1. Also, the cumulative distribution function is right continuous, that is,

lim F(z) = F(z9) at every zg € R.

+

The distribution function allows us to introduce the expectation of a random variable by a formula
that avoids the use of measure theory:

[e.e]

E(f) :/ 2dFy(2).

—00

For convenience, the concept of barycenter will be introduced in the context of probability measures
p defined on the o-algebra B(I) of Borel subsets of an interval I. More exactly, we will consider the
class

PY(I) = {u : u Borel probability measure on I and /|z|du(z) < 00}
I
This class includes all Borel probability measures null outside a bounded subinterval.

Definition 3.1.8. The barycenter of a Borel probability measure u € PL(I) is the real point

bar(pu) = /Izd,u(z).

Necessarily, when the barycenter bar(u) exists, it must be in I. Indeed, if bar(u) ¢ I, then either
bar(u) is an upper bound for I or it is a lower bound. Since

[l = bardutz) =o.
this situation will impose z — bar(u) = 0 p-almost everywhere, which is not possible because u(f) = 1.

Using Definition 3.1.8 we can present a first example concerns the case of a discrete probability
measure A = » ', A\;d,, concentrated at the points z1,...,2, € R. Here d; represents the Dirac
measure concentrated at ¢, that is, the measure given by

di(A) =11t t € A and 6;(A) = 0 otherwise.

In this case,
B(D) = [ £GNG) = Y M),
R k=1
for every continuous function f : R — R. Hence

bar(\) = /de/\(z) = Z)\kzk.
k=1

The barycenter of the restriction of Lebesque measure to an interval [a, b] is the middle point because

1 b a+b
b_a/azdz— 5
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The barycenter of the Gaussian probability measure —L_e=2*/2 is the origin. Indeed,

Ver

1
Nor /Oo 26”720y = 0.

Theorem 3.1.5. (The integral form of Jensen’s inequality) Let (0,3, u) be a probability space and let
g: Q2 — R be a p-integrable function. If f is a convex function defined on an interval I that includes

the image of g, then E(g) € I and
D= [ Hodut)

Notice that the right hand side integral always exists but it might be co if the p-integrable of fog is not
expressly asked. When both functions g and f o g are p-integrable, then the above inequality becomes

f(E(9)) < E(fog).

Furthermore, if in addition f is strictly convex, then this inequality becomes an equality if and only if
g is constant p-almost everywhere.

Corollary 6. If € PY(I) and f: I — R is a u-integrable convex function, then

f(bar(p /f )du(z

Corollary 7. (The Hermite-Hadamard inequality for arbitrary Borel probability measures; [56])
Suppose that f : [a,b] — R is a convez function and p is Borel probability measure on [a,b]. Then

Flbar(n /f JaA(z) < 2 bb‘“"( >.f(a)—|—lmb('ti)a_a-f(b).

Remark 21. (Differential entropy) We assume that (2,2, P) is a probability space. Let f : [0,00) —
R, f(z) = zlogz a convex function. By applying Jensen’s inequality, we obtain the following upper
estimate for the differential entropy h(g) = — nglog gdp of a positive p-integrable function g:

) < ([ o) o ([ ga).

If fQ gdp =1, then h(g) < 0 even though the function f has a variable sign, it attains the minimum
value —% att = %

A natural question is how large is the Jensen gap

E(fog)— f(E(g))

The following result noticed by O. Holder [73] provides the answear in an important spacial case.

Proposition 3.1.14. Suppose that f : [a,b] — R is a twice differentiable function for which there
exist real constants m and M such that m < f"” < M. Then

TN NG 2) <Z)\kfzk <ZAM>

1<z<g<n
Sj D AN )

1<i<j<n

whenever z1, ..., 2z, € [a,b], \1,..., A, €[0,1] and ) A\ = 1.
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Proof. This is a consequence of the discrete Jensen’s inequality when applied to the convex functions
f—mz%/2 and M22/2 — f O

Corollary 8. (The gap in the AM-GM inequality) If 0 < m < z1,...,2, < M, A1,..., A\, € [0,1]
and Y p_1 A\p =1, then

m ) 1 n 1/n
o2 Z (log z; — log 2,) SnZZk—<HZk)

1<j<k<n k=1 k=1
< M

Z (log z; — log z;,)?.

1<j<k<n

Proposition 3.1.14 exhibits the role of the variance in estimating the precision in Jensen’s inequality.

If (2,3, u) is a probability space, the variance of a function g € L?(p) is defined by the formula

var(g) = E((g — E(9))%) = E(¢%) — (E(9))*.

The variance is an indicator of how much the values of g are spread out. A variance of zero indicates
that all the values of ¢ are identical, except possibly for a subset of {2 of probability zero.

The square root of the variance is called the standard deviation.

Since a probability measure is a finite measure, the space L?(p) is included in L'(p). Thus expectation
and variance applies to every function that belongs to L?(u).

Let us consider the probability space Q@ = {1,...,n}, ¥ = P(Q) and p = Y ;_; A\pdr. The variance
of the function g : {1,...,n} — R defined by g(k) =z, for k=1,...,n, is

var(g) = B((g — E(g))*
—E( %) = (E(g

Z AXj(zi—z)2 = D Az — )7,

1<z,]<n 1<i<j<n

and thus the result of Proposition 3.1.14 can be reformulated as

M
2

Dvar(g) < E(f(9)) — f(E(g)) < =var(g).

2

Notice that this double estimate works in general. In probability theory and statistics an important
role is played by the so called continuous random variables. A random variable X attached to a
probability measure space (2, %, P) is called continuous if its cumulative distribution is of the form

z

Fx(z)=P({w: X(w) < z}) = / w(u)du,

—00
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for a suitable Lebesque integrable function w € L'(R), called the density of Fy. In this case, the
probability that X takes a value « is 0 and

b
P({w:aSX(w)gb}):/ w(u)du for all — oo <a <b< 0.

Furthermore, the computation of the expectation and of the variance of X reduces to the computation
of certain Lebesque integrals:

o0 oo

E(X)= / zw(z)dz and var(X) = / (z — B(X))*w(2)dz.
—0o0 —0oQ

A continuous random variable X is called normal if its distribution function is associated to a density

of the form
1 _(u—w)?

w(u, b, 0) = ——e 202
(u, p,0) = =
In this case, the values of the parameters u € R and ¢ > 0 are precisely the expectation and the
standard derivation of X.

Remark 22. (Upper bounds on the variance) As was noticed by D. S. Mitrinovi¢, J. E. Pecarié¢ and
A. M. Fink in [107], p. 296, if X is a random variable such that « < X < B for two suitable constants
«a and 3, then

var(X) < (8 — E(X))(E(X) — a).

This remark improves the upper bound previously indicated by T. Popoviciu [145]

(8- a)

var(X) < 1

The bound found by Mitrinovi¢, Pecari¢ and Fink follows easily from the general properties of expec-
tation:

0<E(B— X)X —a))=—-aB+ (a+p)EX)— E(X?)
= (8- E(X)(E(X) — a) — var(X).

Remark 23. (Chebyshev’s probabilistic inequality) If X is a random variable associated to a probability
measure space (2,3, 1), then
var(X)

p{IX — BE(X)[ > e}) < —5—,

€

for all e > 0.

The covariance of two real random variables X,Y € L2(P) is defined by

cov(X,Y) = E((X — E(X))(Y — E(Y)))
= E(XY)—-EX)E(Y).
Two random variables X and Y whose covariance is zero are called uncorrelated. If X and Y are

independent, then their covariance is zero. This follows because under independence, E(XY) =
E(X)E(Y). However, uncorrelation does not imply in general independence.

The concept of covariance allows us to indicate a new upper estimate of the Jensen gap.
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Theorem 3.1.6. (The covariance form of Jensen’s inequality) Let (2,3, 1) be a probability space and
let g : Q@ — R be a p-integrable function. Suppose also that f is a convex function defined on an
interval I that includes the image of g and n: I — R is a function such that

(7) n(z) € Of(z) for every z € I;

(ii) nog and g- (nog) are u-integrable functions.

Then
0< E(fog)— f(E(9)) < cov(g,neog).

If f is concave, then the last two inequalities work in the reserved direction.

Proof. The first inequality is motivated by Theorem 3.1.5. The second inequality follows by integrating
the inequality

F(E(9)) = f9(2)) + (E(9) — 9(2)) - n(g(2)) for all z € Q.
O

Corollary 9. (S. S. Dragomir and N. M. Ionescu [51]) If f is a differentiable convex function defined
on an open interval I, then

0<Z)\kf %) <Z)\k2k>
< Z/\kzkf (2k) (ZM%) <Zn:)\kf/(2k)>
k=1

forall zi,...,zn € I and all A\1,..., Ay € [0,1], with Y, A\ = 1.

The covariance defines a Hermitian product and it differs from a scalar product by the fact that
cov(X, X) = 0 implies only that X is constant almost everywhere. Since the Cauchy-Bunyakovsky-
Schwarz inequality still works for such products, we have the inequality

lcov(X,Y)| < (var(X))Y2(var(Y))Y/?2,
knows as the covariance form of Cauchy-Bunyakovsky-Schwarz inequality. This inequality shows that
Pearson’s correlation coefficient of X and Y, that is,
cov(X,Y)
(var (X)) 2 (var(Y )12
takes values in the interval [—1, 1]. A value of 1, respectively —1 for px y implies that the relationship

between X and Y is described by a linear equation, for which Y increases, respectively decreases as X
increases. A value of 0 implies that there is no linear correlation between the two random variables.

PXY =

From the covariance form of Cauchy-Bunyakovsky-Schwartz inequality and Remark 23 we infer the
following classical result:

Theorem 3.1.7. (Griss Inequality [65]) Suppose that the random variables X and Y are bounded,
precisely, a < X < B and § <Y <. Then

|cov(X, V)| < 2 (6 — a)(y = 9).

=

and the constant % being sharp.
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3.1.7 Convex sets in real linear spaces

In this subsection we review some basic facts, necessary for a deep understanding of the concept of
convexity in real linear spaces. The natural domain for a convex function is a convex set.

A subset C' of a linear space FE is said to be convex if it contains the line segment
[z,y] ={(1 =Nz + Ay : A €[0,1]},

connecting any of its points z and y. Convexity is a weak form of rotundity. Besides line segments,
some others simple examples of convex sets in the Euclidian space R are the lines, the planes, the
open disc, plus any part of their boundary and the N-dimensional rectangles (Cartesian products of
N nonempty intervals).

New examples from the old ones can be obtained by considering arbitrary intersections and/or the
following two algebraic operations with sets:

A+B={z+y:ze€ A ye B},

M ={Xz:z € A},

for A,B C F and A\ € R. The addition of sets is also known as the Minkowski addition. Addition of
sets is commutative and associative. One can prove easily that AA 4+ B is a convex set provided that
A and B are convex and A, i > 0.

A subset A of E is said to be affine if it contains the whole line through any two of its points.
Algebraically, this means that

z,y € Aand A € R imply (1 - M)z + Ay € A.

Cleary, any affine subset is also convex, but the converse is not true. It is important to notice that
any affine subset A is just the translate of a unique linear subspace L and all translations of a linear
space represent affine sets. In fact, for every a € A, the translate

L=A—-a

is a linear space and it is clear that A = L + a. For the uniqueness part, notice that if L and M are
linear subspaces of E and a,b € E verify

L+a=M+b,

then necessarily L = M and a — b € L. This remark allows us to introduce the concept of dimension
for an affine set (as the dimension of the linear subspace of which it is a translate). Given a finite
family x1,...,x, of points in F, an affine combination of them is any point of the form

n
T = § AkTg,
k=1

where A1,..., A\, € Roand Y ;_; Ay = 1. If in addition Ay,..., A, > 0, then z is called a convex
combination of x1,...,x,.
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Convex Nonconvex

Figure 3.5: Convex and nonconvex planar sets

Lemma 3.1.2. A subset C of E is convex (respectively affine) if and only if it contains every convex
(respectively affine) combination of points of C.

Proof. The sufficiency part is clear, while the necessity part can be proved by mathematical induction.
O

Given a subset A of E, the intersection conv(A) of all convex subsets of E containing A is convex
and thus it is the smallest set of this nature containing A. We call it the convex hull of A. By using
Lemma 3.1.2, one can verify easily that conv(A) consists of all convex combinations of elements of A.

The affine variant of this construction yields the affine hull of A, denoted aff(A). As a consequence
we can introduce the concept of dimension for convex sets to be the dimension of their affine hulls.

A nice example of convex hull is offered by the Gauss-Lucas theorem on the distribution of the critical
points of a polynomial: the roots (,uk)Z;% of the derivative P’ of any complex polynomial P of degree
n > 2 lie in the smallest convex polygon containing the roots ()\i)}l:l of the polynomial P. Indeed
assuming that w is a root of P’ and P(w) # 0, we have

_P’(w)_ o wW—\
0= Plw) ~ 2w Z|w e

)\
=1 k

whence

w—le Awl? /Z|w Ael?

If (S;)iez is a finite family of subsets of an N-dimensional linear space E, then the convex hull of their
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Minkovski addition equals the Minkovski addition of their convex hulls:

conv<23i) = conv(S;). (3.1.9)

1€l i€l

Surprisingly, this simple remark has deep consequently to the geometry of convex sets. The clue is
provided by the following unifying lemma, used by R. M. Anderson in his course on Economic Theory,
taught in Spring 2010 at Berkeley.

Lemma 3.1.3. Consider a finite family (S;)icz of nonempty subsets of RN. Then every x €
conv(ZieZ S’Z) admits a representation of the form

=X 3 )

i€ \1<j<n;

such that

(1) 2ier <IZ[+ N;
(ii) Ti; € S; and >\ij >0 foralli,j;
(#1) >0y Nij =1 for alli € T.

Proof. According to formula (3.1.9), every point x € conv(ZiGI SZ) admits a representation of the

form x = ) .7 x; with x; € conv(S;) for all i. Therefore,

T = Z ( Z )\ijxij), (3.1.10)

i€ \1<j<n;

for suitable x;; € S; and A;; > 0 with Z;il = 1. Clearly, one can choose such a representation for
which n = ), 7 n; is minimal. If n > |Z| + N, then the vectors z;; — x;; for i € Z and j € [2,n;] are
linearly dependent in RY. Then

Z Z cij(xij —xin) = 0,

i€ 2<j<n;
for some real coefficients, not all zero. Adding to equation (3.1.10) the last equation multiplied by a

J?:Z Z S\ijﬂj‘ij, (3.1.11)

1€ 1<j<n;

real number A we obtain

where

Xij = Nij+ A if =2,
At = At — A Z c =1
2<k<n;
By a suitable choice of A one can ensure that :\ij > 0 for all indices ¢, and that all least one
coefficient \;; is zero. The representation (3.1.11) eliminates one of z;;, contrary to the minimality of
n. Consequently, n < |Z| + N and the proof is complete. O
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Theorem 3.1.8. (Carathéodoory’s theorem) Suppose that S is a subset of a linear space E and its
convez hull conv(S) has dimension m. Then each point x of conv(S) is the convex combination of at
most m + 1 points of S.

Proof. Clearly, we may assume that £ = R™. Then apply Lemma 3.1.3 for Z = {1} and S; = S. O

The sets of the form C' = conv({zy,...,z,}) are usually called polytopes. If z1 — xg,...,z, — o are
linearly independent, then C' is called an n-simplex with vertices zq,...,z,. In this case, dimC =n
and every point  of C' has a unique representation x = ) ;_, A\gZg, as a convex combination of
vertices; the numbers Ag, ..., A, are called the barycentric coordinates of x.

The standard n-simplex or unit n-simplex is the simplex A™ whose vertices are the elements of the
canonical algebraic basis of R”*!, that is,

A" = {(Ao,-..,An) €R™ Y "N =1and M\ >0 for all k:}
k=0

Given an arbitrary n-simplex C' with vertices (xo, ..., zy), the map
n
w:An—>C, w()\o,...,/\n):Z)\kxk
k=0

is affine and bijective. Notice that any polytope conv({xg,...,z,}) is a union of simplices whose
vertices belong to {xg,...,xn}.

Remark 24. (Lagrange’s barycenter identity) Consider a finite system S of mass points (zx, my) in
R fork =1,...,n; ) indicates position and my, the mass. In mechanics and physics, one defines
the barycenter or center of mass of the system by

bar(S) = anl RE.
k=1

The mass point (barS,> _, my) represents the resultant of the system S. Notice that barS €
conv({xo,...,zn}). A practical way to determine the barycenter was found by J. K. Lagrange [91],

who proved the following identity: For every family of points x,x1,...,xy in R™ and every family of
real weights my, ... ,my with M =%, _, my > 0, we have

> mullw = ][ = Mllw — 52> mpag|| + 57 Z mimj|z; — ;||

k=1 k=1 1<i<j<n

For the proof, use the formula ||z||> = (z,2). The previous formula yields the following variational
definition of barycenter: bar(S) is the unique point that minimizes the function x — > ;_ mg||lz —

x| |?, that s,
n

bar(S) = i |2,
ar(S) arggﬁ%;mﬂ‘x ol
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3.2 On the barycenter for discrete Steffensen Popoviciu measures
in global NPC spaces

In this section we put in a new light the concept of barycenter for discrete Steffensen Popoviciu
measures supported in some points belonging to a space with curved geometry. More precisely, we
ensure the existence of the barycenter if we relax the restrictions imposed to the weights of the
measure. As applications, even in the case of nonpositive weights we deduce Jensen-Steffensen’s,
Hardy-Littlewood-Polya’s and Sherman’s type inequalities on global NPC spaces.

In the last decades numerous authors performed an intense research activity to extend majorization
theory beyond classical case of probability measures, i.e. Steffensen Popoviciu measures. The main
point of interest into this topic of research is to offer a large framework under which Jensen’s type
inequalities works. Jensen Steffensen’s inequality (see [116, Theorem 2.4.4]) reveals an important case
when Jensen’s inequality works beyond the framework of positive measures. In fact, this is our aim,
to relax the concept of barycenter in spaces with curved geometry, in order to provide more insight
into the relation between signed measures and Jensen’s type inequalities.

Based on the fact that most of weighted inequalities from the theory of convex functions are dealing
with positive weights we consider here the challenging case of nonpositive weights. In this context, we
recall the so called Jensen Steffensen inequality (we refer, for instance, to [115]).

Theorem 3.2.1. Let x,, < xp—1 < --- < x1 in an interval [a,b] and let py,. .., p, be some real numbers
such that the partial sums S = Zle p; verify the relations

0S5, <8, and S, >0.

Then, for every convex functions f : [a,b] — R we have the inequality
I 1O
Fla D pren | <D prflan).
S k=1 Sn k=1

In fact, the above result is related to the general concept of Steffensen Popoviciu’s measure, as it is
presented in [114, 115, 116].

Definition 3.2.1. Let K be a compact convex subset of a real locally convexr Hausdorff space E. A
Steffensen Popoviciu measure on K is any real Borel measure p on K such that p(K) > 0 and

| #@)antz) 2o,
K
for every positive, continuous and convex function f: K — R.

The characterization of discrete Steffensen Popoviciu’s measures is presented in [116, Corollary 9.14].

Proposition 3.2.1. Suppose that 1 < --- <z, are real points and p1,...,p, are real weights. Then,
the discrete measure g =Y ;i POz, is a Steffensen Popoviciu measure if

Y pe>0and 0<d pp <Y pr (mefl,...,n}).
k=1 k=1 k=1
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The concept of barycenter for Steffensen Popoviciu measures was fully discussed in [116, Lemma
9.2.3 and Theorem 9.2.4]. But, our aim is to give a new perspective to the barycenter concept on more
general spaces, namely global NPC spaces, via the majorization techniques.

It is worth noticing that the concept of weighted majorization in RY is related to an optimization
problem. Indeed, we have

1 n
x; :argmin52aij Iz —yj|*, fori=1,...,m.

2€RN j=1

In what follows we shall deal with the relation of weighted majorization <, for pairs of discrete
probability measures. In the context of Euclidean space RY,

l m
D Xiba, <> by, (3.2.1)
i=1 j=1

means the existence of a m x [-dimensional matrix A = (a;;); ; such that the following four conditions
are fulfilled:

a;; > 0, for all 4, j, (3.2.2)
m
dai=1, i=1,...,1, (3.2.3)
j=1
l
My = Z aji)\i, j = 1, e,y (324)
i=1
and
m
xi:Zajiyj, iIl,...,l. (325)
j=1

See Borcea [27] and Marshal, Olkin and Arnold [104]. The matrices verifying the conditions (3.2.2)
and (3.2.3) are called stochastic on rows. When | = m and all weights A; and p; are equal to 1/m, the
condition (3.2.4) assures the stochasticity on columns, so in that case we deal with doubly stochastic
matrices.

Under the above settings, S. Sherman [160] use the concept of weighted majorization and proved
that, the following inequality

holds for every convex function f: I — R.

The aim of this section from the thesis is to extend the above majorization theory and the classical
inequalities for Steffensen Popoviciu measures, in spaces with curved geometry. More precisely, our
scope is to extend Theorem 3.2.1 in the framework of global NPC spaces and then to derive HLP’s,
Sherman’s and Jensen Steffensen’s type inequalities.

Subsection 3.1.1 is devoted to the concept of barycenter and Jensen Steffensen’s inequalities in the
framework of global NPC spaces; in subsection 3.1.2 we present some applications related to HLP’s,
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Sherman’s and Jensen Steffensen’s type inequalities for the weighted majorization of discrete mea-
sures (with nonpositive weights); Subsection 3.1.3 present some conclusions, extensions and further
applications related to relative convexity in global NPC spaces.

3.2.1 Jensen Steffensen’s type inequalities on global NPC spaces

Inspired from [94], we present an extension of barycenter for Steffensen Popoviciu discrete measures,
where the most important ingredient in NPC spaces is the barycenter of a discrete probability measures
A=>""1Aidg,. Thus, in what follows we relax the concept of barycenter by considering nonpositive
weights for the discrete measures.

Definition 3.2.2. Let X := {z1,...,z,} be a family of points in a global NPC space M, all these
points belonging to the same geodesic [x1,xy] and, in addition the following assumptions are verified

T; € [Ti—1, Tit1] (i€{2,3,...,n—1}).
For any family of real weights A := {\1,..., A} which verify
0<S<S,=1 (ie{l,2,...,n}),

where
Sp=A+- "+ (k€{1’2)--'an})v

we define the notion of weak barycenter of the family of points X with respect to the family of real
weights A as the unique point X on the geodesic [x1,xy,] satisfying

d()_(, xl) = ggd(xg, 331) + 5’3d($3, Ig) + -+ gnd(xn, l’n_l), (326)

or, equivalenty,
d(xyn,x) = S1d(z2, 1) + Sad(z3,x2) + -+ - + Sn—1d(Tp, Tn—1), (3.2.7)

where

Sk=Xe+- -+ (ke {1,2,...,n}).

Remark 25. Note that, the weak barycenter X from (3.2.10) and (3.2.11) is well defined and we have
that
d(x,x1) + d(xzp,X) = d(z2,21) + d(x3,22) + - - - + d(Tp, Tp1) = d(Tp, 1),

which confirm the fact that X lies on the geodesic [x1,xy,]. Moreover, using (3.2.10) or (3.2.11) in flat
spaces some computations goes back to the following classical formula

X=MNx1+ -+ Axp.

We are now in position to present a completely new proof of Jensen-Steffensen’s inequality in the
most relevant case, where we have considered the maximum possible number of nonpositive weights.

Theorem 3.2.2. (The discrete form of Jensen-Steffensen’s Inequality) Let X and A be given as in
Definition 3.2.2, but with nonpositive weights Aa, Az, ..., Ap—1 < 0.

Then, for every continuous convex function f : M — R we have the inequality

F&) <D Nif ().
i=1
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Proof. Taking into acount (3.2.10) and (3.2.11) a moment of reflections shows that

x = bar((1 — £9)dz, + t00z, ),

where
()\2 + 4 )\n) d(xg, :Bl) + ()\3 + -+ )\n) d(x37$2) + -+ )\nd(azn, :L‘n_l)

d(xp,x1)

Hence, from convexity property along geodesic of the function f we get

to =

<) < Ald(xg, :cl) =+ ()\1 + )\2) d(xg, .IQ) =+ ... ()\1 R )\n—l) d((L‘n, xn_l)f ($1>

f(x) < (o 71)
n Ao+ -+ Ap)d(ze, 21) + (A3 +d(93 +x>$) d(x3,x2) + - + A\pd(zp, Tn—1) f(z0)
=Mf (1) + M f (x0) + )\2f (1) d(n, Z?l"’xfl()wn) d(x2, 1)
f(z1) d(@n, x3) + f (25) d(z3, 21)

A
A3 d(xp,x1)

f ($1) d(.’En, $nfl) + f (l‘n) d(-rnfla $1)
d(xp, 1) ’

+)\n—1

Using again the convexity of f and the fact that

d(n, ;) d(zi, z1) . o
bar (d(xn’xl)(sxl + mézn =; (Z = 2,...,77, ].),

we deduce that the following inequalities hold true

[ (21) d(zn, 22) + f (20) d(72,71)

f(z2) <

(xna 1) ’
Flos) < [ (@1) d(@n, x3) + f (zq) d(zs, 71)
- (mna LL'l) ’
f(a:‘ ) < f (.%‘1) d(xm xn—l) + f (wn) d<xn—17 xl)
nel) = d(xp,x1) )
Finally, since A2, A3, ..., A\p—1 are nonpositive we get the desired conclusion.

3.2.2 Applications to HLP’s and Sherman’s type inequalities with nonpositive
weights

In order to obtain Sherman’s type inequalities with nonpositive weights we firstly introduce the relaxed
concept of majorization between two n-tuples of points in a global NPC space (M, d).
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Definition 3.2.3. Let x = (1,...,2p) € M", y = (Y1,...,Yn) € M, n > 2.
We define the concept of majorization x <y by asking the existence of a matriz A = (a;j) € M (R)
such that
e ; <0 (i #1ori#l);

® Vi € [Yi—1,Yit+1) (1 €{2,3,...,1 = 1}) verify that all these points belong to the same geodesic
[y17 ym} 5

e x; is the weak barycenter of the family of points X := {y1,...,ym} with respect to the family of
real weights AV as the unique point x; on the geodesic [y1,ym] satisfying

Az, 1) = Syd(y2, 1) + S3d(yz, y2) + - + SLd(Yn, Yn_1), (3.2.8)

or, equivalenty,

d(Yn, 7i) = SId(y2, y1) + Sid(ys,y2) + - + S _1d(Yns Yn_1), (3.2.9)

where A
N o= {ayj, ..., an;} (je{1,...,m}),
S]Z;:Oékj+"'+anj (ke{1,2,...,1}),
Si:a1j+"‘+akj (ke{1,2,...,1}),
0<8<8=1 (ke{l2,...1}).

We can present now the extension of HLP’s inequality in a global NPC space (M, d), when the weights
are allowed to be nonpositive.

Theorem 3.2.3. In the hypotheses from Definition 3.2.83 let us suppose that conditions (3.2.8) are
satisfied. Then, the following inequality

> F@) <D )
i=1 =1

holds for every convex function f: M — R.

Proof. Since the hypotheses of Theorem 3.2.2 are satisfied for each x = x;, we get

Fla) <) aiifly)  (i=1,....0).

=1

Taking into account (3.2.8) — (3.2.9) and applying Theorem 3.2.2 for each y;, i = 1,...,m, where
Yi = Z§':1 DjTj, Pj = Q45, we get

D aif (@)=Y aif [ D e
i=1 i=1 =1
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l m m l
<Doai [ Dol () | =D f ()Y aiayi.
i=1 j=1 j=1 i=1
Consequently, since b; = 22:1 a;oj; we have

l m
D_aif (@) <D bif ().

O
We are in position to introduce the relaxed weighted concept of majorization between two n-tuples

of points in a global NPC space M.

Definition 3.2.4. Let x = (z1,...,21) € M\, y = (y1,...,Ym) € M™, m,1 > 2. We consider some
real weights a = (a1, ...,a;) € Rl (which can be nonpositive) and b = (b, ..., by) € [0,00)™.

We define the concept of weighted majorization (x,a) < (y,b) by asking the existence of a matriz
A = (ay5) € M (R) such that
o a;; <0 (it #Lori#l);

® Y € [Yi—1,Yi+1] (1 €{2,3,...,1—1}) verify that all these points belong to the same geodesic
[yl) ym} 5

e x; is the weak barycenter of the family of points X := {y1,...,ym} with respect to the family of
real weights AV as the unique point x; on the geodesic [y1,ym| satisfying

d(wi,11) = Sd(y2, 1) + S§d(ys, y2) + -+ + Sid(Yn, yn—1), (3.2.10)
or, equivalenty,
A(yn, 7:) = S{d(y2, 1) + S5d(ys, y2) + -+ + S_1d(yn, yn1), (3.2.11)
where .
N o={aqj, ..., an} (Jed{l,...,m}),
S =t tan (ke {L2,...1}),
Si:au-i-“'-i—akj (ke{1,2,...,1}),
0<8i <8 =1 (ke{1,2,...,1}),
o

l
bj = Zaiaﬁ, (] = 1,...,m), (3.2.12)
=1

We can now present the extension of Sherman’s inequality in a global NPC space (M, d), when the
weights are allowed to be nonpositive.
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Theorem 3.2.4. In the hypotheses from Definition 3.2.4 let us suppose that conditions (3.2.10) are
satisfied. Then, the following inequality

m l

D aif(x) < bif(y;)
i=1 7j=1

holds for every convex function f : M — R.

Proof. Since the hypotheses of Theorem 3.2.2 are satisfied for each x = x;, we get

Flai) <Y aifly)  (i=1,....0).

=1

Taking into account (3.2.10) — (3.2.11) and applying Theorem 3.2.2 for each y;, i = 1,...,m, where
Yi = Zé‘:1 DjTj, Pj = 5, We get

Zazf (mz) = Zazf Zy]a]z
=1 =1 7j=1
m m l
< Z a; Z ajzf (yj) = Z f (yj) Z A
=1 7j=1 J=1 =1

3.2.3 Conclusions and further open problems

Note that, in this section we extend the notion of barycenter for discrete Steffensen Popoviciu measures.
In essence, we allow the case of nonpositive weights, but with additional conditions imposed to the
points in which the measure is supported.

Hence, in this section of the thesis we assume that all the points in which is supported the discrete
measure should be on the same geodesic. But, we can give some general conditions, in which the same
results hold, but without imposing the same geodesic support.

More precisely, if the points z1,...,z, € M satisfy

bar <d(mn,xi)5 N d(x;, z1)

d(zp, 1) M5zn>:$i (i=2,...,n—1),

then, all the inequalities from Theorems 3.2.2 and 3.2.3 still hold true.
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Hence, one future aim will consists of looking for a characterization of the points verifying the
above conditions. On the other hand, in [118, 124] the availability of Jensen’s inequality in a certain
nonconvex context is discussed. We outline the usefulness of the concept of point of convexity. We
briefly present here the main ideas which will be used to treat the case of nonpositive weights in this
context.

Definition 3.2.5. Let f: M — R be a continuous function. A point a € M is a point of convexity
of the function f if

Fla) <Y Aif (@), (3.2.13)
=1

for every family of points x1, ...,z in M and every family of positive weights A1, ..., Ap withy ;| i =
1 and bar (37| Midz,) = a.

The point a is a point of concavity if it is a point of convexity for —f (equivalently, if the above
inequality works in the reversed way).

In [118] we discuss the availability of Jensen’s inequality in a nonconvex context, in which we em-
phasize the usefulness of the concept of point of convexity. Thus, even in the case of spaces with a
curved geometry we have successfully introduced the point of convexity. See [124].

Hence, another future aim is to define a relaxed notion of ”point of relative convexity”, based on
the barycenter discussed in this subsection. Moreover, our aim is to recover that all the convex type
inequalities hold true if there exists such a point of relative convexity, all of this being open problems
in global NPC spaces.



Chapter 4

Final remarks and open problems

In this chapter we present some final remarks and further open problems related to the results obtained
in the present doctoral thesis. These problems are dealing with the possibility to continue to develop
new results within the topic of this thesis. More precisely, we discuss about norm properties of the
complete homogeneous symmetric polynomials, some error estimates with respect to euclidean norms
and other symmetric inequalities related with discrete Korn’s type inequalities. These norms, their
unusual construction, and their potential applications suggest some open problems. Moreover, the
topic of weak majorization in a global NPC spaces and its applications is also discussed.

4.1 Norms on complex matrices included by complete homogeneous
symmetric polynomials

Note that this section is inspired from [4]. In this section we discuss about a family of norms on the
space of n X n complex matrices which are initially defined in terms of certain symmetric functions
of eigenvalues of complex Hermitian matrices. The fact that we deal with eigenvalues, as opposed to
their absolute values, is notable. It prevents standard machinery, such as the theory of symmetric
gauge functions, from applying and the techniques used to establish that we indeed have norms are
more complicated than one might expect. For example, combinatorics, probability theory, and Lewis’
framework for group invariance in convex matrix analysis each play key roles.

These norms on the Hermitian matrices are of independent interest, because they can be computed
recursively or directly read from the characteristic polynomial. They can be extended in a natural
and nontrivial manner to all complex matrices. Such extensions of original norms involve partition
combinatorics and trace polynomials in noncommuting variables.

A Schur convexity argument permits our norms to be bounded below in terms of the mean eigenvalue
of a matrix. Denote by H,(C) the set of n x n complex Hermitian matrices, M, (C) the set of n x n
complex matrices and the eigenvalues of A € H,,(C) by

A(A) = A2(A) = -+ = An(4)
and define
AMA) = (M(A), A2(A),..., \(A)) € R™.

109
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We may use A and A\, A2, ..., A, if the matrix A is clear from context. Denote by diag(x1,x2,...,2,) €
M,,(C) the nxn diagonal matrix with diagonal entries x1, z2, ..., x,, in that order. If x = (z1, z2,...,x,)
is understood from context, we may write diag(z) for brevity. For the convenience of the reader we
recall the complete homogeneous symmetric polynomials of degree d in the n variables x1,zs,..., 2,
given by

hd(l'l,l’Q,...,{L‘n) = Z Lj1 Ly -« - Tjy, (4.1.1)

1<y <-+<ig<n
the sum of all degree d monomials in x1, xo,...,,. For example,
ho(x1,2) = 1,

3., .2 2., .3
hs(x1,22) = x] + 2722 + 2125 + T5.

When the degree d is even and x € R™, Hunter proved that hg(z) > 0, with equality if and only if
x = 0 [74]. This is not obvious because some of the summands that comprise hq(z) for d even may be
negative.

Definition 4.1.1. A partition of d € N is an r-tuple 7 = (71,72, ...,7) € N such that w3 > mg >
<o > 7w and ™ 4+ w9 4 -+ - + m- = d, the number of terms r depends on the partition w. We say that
mFd if T is a partition of d.

For any 7 F d, we define

pw($1,$2, - ,I’n) = Pm1Pry - - - Prps

where p(x1,29,...,2,) = x’f + :cé 4 -+ + 2 are the power sum symmetric polynomials. In another
form, we can write

ha(z1, 22, ..., Tp) :Zp”( D2y "), (4.1.2)

Zr
m=d
in which the sum runs over all partitions 7 = (71,79, ..., ) of d and
Zr = Him"mi!,
i>1

where m; is the multiplicity of i in . For example, if 7 = (4,4,2,1,1,1) then z, = (133!)(2'1!)(4%2!) =
384. The integer z, is precisely the Hall inner product of p, with itself, in symmetric function theory.

If A€ H,(C) has eigenvalues A = (A1, A2,...,\,), then
pﬂ‘(>\) = Pm (A)pﬂ'Z ()‘) © Pry (>‘) = (tT‘Am)(tTAM) T (tTAWT)' (4'1'3)
Thus, the previous relations connects eigenvalues, traces and partitions to symmetric polynomials.

The following theorem provides a family of novel norms on the space H,(C) of n x n Hermitian
matrices. See [4].

Theorem 4.1.1. For even d > 2, the following is a norm on Hy(C):

1AIllg = (ha(A1(A), Aa(A), . .., A(A))) /4.
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For example, using equations (4.1.2) and (4.1.3) we obtain trace-polynomial representations

A3 = 5 (tr(A%) + (trA)?), (4.1.4)

1
2
1A]||3 = i((trA)‘l + 6(trA)%tr(A%) + 3(tr(A?))? + 8(trA)tr(A3) + 6tr(AY)). (4.1.5)

The above theorem needs some useful remarks.

(1) The sums (4.1.1) and (4.1.2) that characterize hg(A(A)) may contain negative summands.
(2) The sums that define these norms do not involve the absolute values of the eigenvalues of A.

(3) The relationship between the spectra of (Hermitian) A, B and A + B, conjectured by A. Horn
in 1962 [72], was only established in 1998-9 by Klyachko [84] and Knutson-Tao [85]. Therefore,
the triangle inequality is difficult to establish. Even if A and B are diagonal, the result is not
obvious, but also in the case of positive diagonal matrices this result has been rediscovered.

(4) In the general Hermitian case is not straight-forward: standard techniques like symmetric gauge
functions are not applicable, we need to involves Lewis’ framework for group invariance in convex
matrix analysis.

(5) Another genuine approach to norms on R" is due to Ahmadi, de Klerk, and Hall [[5], Thm. 2.1].
Note that, using Theorem 4.1.1 together with [[5], Thm. 2.1] we get convexity property.

4.2 Complete homogeneous symmetric polynomials as expectations

In this section we present a change of the perspective, by connecting complete homogeneous symmetric

polynomials with expectations. Let us consider ¢ = ({1, (2, ..., (,) be a vector of independent standard
exponential random variables and let = (x1,x2,...,2,) € R™. Since E[Cf] =klfori=1,2,...,n we
have that

E[(¢,2)"] = E[(Giz1 + Gowrz + -+ + Gon) ]

d! k1 Ak k1, k
— E : 1 k2 n K1 .k2 kn,
—E|: ml 9 CTL .ZUl .’I]2 ...xn
P S N kol L Ry

d! [
_ § 1 k2 kn k1 k2 k
= m]}z[ 1 G2 Cnnxl IZ‘2 :En"}
bRt e —d 1Rl LRyt

k k k
=d > BIGMEIG]:  EIG] by b
ki +kot.. kn=d kilka! .. k! n
iy -
k1 +ko+.. kn=d
= d'hq(z),

for integral d > 1, where for the last estimates we have used the linearity of expectation and the
independence of the (1, (o, ..., (,.
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Sincer for any d an even natural number, we have
1
ha(z) = EEWC,UCW] >0, (4.2.1)

Minkowski’s inequality implies that
(=0ic.z+ 1) < (Bc.am) " + (Bl )",
[ha(x + y)]"* < [ha(2)]* + [ha(y)]V*.

for z,y € R™.

We consider now the inner product (X,Y) = tr(XY) on H,(C), which is the restriction of the
Frobenius inner product to Hy,(C). The inequality

tr(XY) <trd(X)i(Y) (X,Y € H,(C)) (4.2.2)
is due to von Neumann and, for diagonal matrices, is equivalent to a classical rearrangement result

(z,y) < (2,9),
where Z € R™ has the components of z = (z1, z2,...,2,) in decreasing order.

For even d, the nonnegativity of the polynomials has a probabilistic approach which appears in
[165], and in [[164], Lem. 12|, which cites [20]. There are many other proofs of the nonnegativity
of the even-degree CHS polynomials. Of course, there is Hunter’s inductive proof [74]. Roventa and
Temereanca used divided differences [[153], Thm. 3.5]. Recently, Bottcher, Garcia, Omar and O’Neill
[29] employed a spline-based approach suggested by Olshansky after Garcia, Omar, O’Neill, and Yih
obtained it as a byproduct of investigations into numerical semigroups [[60], Cor. 17].

The CHS norm of a Hermitian matrix can be exactly computed from its characteristic polynomial.
The following theorem involves only formal series manipulations. See [4].

Theorem 4.2.1. Let pa(x) denote the characteristic polynomials of A € H,(C). For d > 2 even,
|| A|||4 is the d-th coefficient in the Taylor expansion around the origin of

1 1

det(I —xA)  a"pa(l/z)’

2

Example 5. Let A = —xz—1 and

1
ol Then pa(z) = x

: L=
= == X
w?pa(l/z) 1-z—a? 4 i

in which fp is the n-th Fibonacci number; given by fnio = fo+1+ fn and fo =0 and f1 = 1. It follows
that |||Al||% = f4 for even d > 2.
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Note that, for any A € H,(C), the sequence hg(A1, Ag,...,\,) satisfies a constant-coefficient re-
currence of order mn since its generating function is a rational function whose denominator has de-
gree n. Using this method we can solve such a recurrence and we can compute explicitly ||A]|4, for
d=2,4,6,....

On the other hand, for any d > 1, the Newton-Gerard identities [158] give

1

d
ha(z1,z2,...,2n) = Z ha—i(z1, 22, ..., Tn)pi(T2, T2, ..., Zp).
=1

|

Hence, for A € H,(C) and d > 2 even, we have that

ha(A(4)) =

Ul =

d
> ha-i(A(A))tr(AY),
=1

and then we can recursively compute [||A[||¢ = hg(A(A)).

In the following we try to show that each CHS norm on M, (C) is bounded below by an explicit
positive multiple of the trace seminorm. That is, the CHS norms of a matrix can be related to its
mean eigenvalue. See [4].

Theorem 4.2.2. For A € M,(C) and d > 2 even,

9

n+d—1 l/d\trA\
n

Alllg >
Mt > ("

with equality if and only if A is a multiple of the identity.
Proof. Let d > 2 be even. The even-degree complete homogeneous symmetric polynomials are Schur
convex [165].

Let A € M,(C) and define B(t) = e®A + e ®A* for t € R. Then \(B(t)) majorizes u(t) =
(u(t), 1(0), . (1)) € B, where u(t) = trB(t)/n.

We have that

1B = ha(A(B(£)) > ha(p(t)) = u(t)d<n +3_ 1>,
(n+j—1) 27 4 1/d
11 A[lla > <2W(d%) /O wu(t) dt> : (4.2.3)

Taking into account that

27 27 d 27
/ u(t)dt = / (”B(t)> dt = — [ (et A+ e=tr(A%))dt
0 0

n ond

1 d d 2r
==y (k> (trA*) =k (tr A / ')t gy
n

0
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. 2 d d
N nd(d/Q)‘tTA' !

which gives the conclusion. The Fourier expansion gives that

et A4 e AT = (Z ﬂ(n)emt> I,

nel

thus A = i(1)I. The converse also holds. O

Note also that, for A € H,,(C) and even d > 2, we can deduce that

1 )”d n+d—1\"4
A[lop < [l|Allla < |1 A]lop-
<2‘§(g)! g d g

4.3 Polynomial norms

Note that this section is inspired from [5]. In this section, we present some polynomial norms, which
means norms that are the d*" root of a homogeneous polynomial with degree d. An interesting
connection between convexity and norm is given in the following theorem. See [5].

Theorem 4.3.1. Let f be a form of degree d in n variables. The following statements are equivalent:

(1) The function f% is a norm on R".

(2) The function f is convex and positive definite.

(3) The function f is strictly convez.
Proof. (1) = (2) Since f'/¢ is a norm, then f'/¢ is positive definite, and so is f. Notice that any
norm is convex and the d*" power of a nonnegative convex function remains convex.

(2) = (3) Suppose that f is convex, positive definite, but not strictly convex and we can say that
there exists z,y € R" with z # g, and 7 € (0, 1) such that

fOZ+ A =)79) =vf(@) + (1 =) (@)

Let g(«) := f(Z+a(y—x)). Note that g is a restriction of f to a line and, consequently, g is a convex,
positive definite, univariate polynomial in . We now define

h(@) = g(@) = (9(1) = 9(0))a = g(0). (4.3.1)

Similarly to g, h is a convex univariate polynomial as it is the sum of two convex univariate polynomials.
We also know that h(a) > 0,Va € (0,1). Indeed, by convexity of g, we have that

glar+ (1 —a)y) > ag(z) + (1 — a)g(y), Vz,y € R and a € (0,1).

This inequality holds in particular for x = 1 and y = 0, which proves the claim. Observe now that
h(0) = h(1) = 0. By convexity of h and its nonnegativity over (0,1), we have that h(a) = 0 on
(0,1) which further implies that A = 0. Hence, from (4.3.1), ¢ is an affine function. As g is positive
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definite, it cannot be that g has a nonzero slope, so g has to be a constant. But this contradicts that
limg— 00 g(a) = 00.
To see why this limit must be infinite, we show that lim|,| . f(z) = c0. As

Jim [[z +a(y — 2)|| = 0o and g(a) = f(z + a(y - 7)),
implies that lim, e g(a) = 0o. To show that lim,|—ec f(7) = 00, let

x* = arg min f(x).
|lz[[=1

By positive definiteness of f, f(z*) > 0. Let M be any positive scalar and define R := (M/ f(z*))'/<.
Then for any « such that ||z|| = R, we have

f(z) > min f(x) > R f(a*) = M,

llz|l=rR

where the second inequality holds by homogeneous of f. Thus lim||,(|_e f(7) = 00.
(3) = (1) Homogeneity of f1/¢ is immediate. Positivity follows from the first-order characterization
of strict convexity:

fly) > f(x) +Vf(a:)T(y—x), Yy # x.

Indeed, for z = 0, the inequality becomes f(x) > 0, Yy # 0, as f(0) = 0 and v/ f(0) = 0. Hence, f is
positive definite, and so is f/?. It remains to prove the triangle inequality. Let g := f 1/d Denote by
Sy and Sy the 1-sublevel sets of f and g respectively. It is clear that

Sg = {a|f () <1} = {2|f(2) < 1} = 5y,

and as f is strictly convex (and hence quasi-convex), S is convex and so is S,. Let z,y € R". We
have that ﬁ € Sy and WZ) € S4. From convexity of Sy,

glz) = gly)
g<g(:v) o) 9@ @) + () g(y)) =t

Homogeneity of g then gives us

1
9(x) +g(y)
which shows that triangle inequality holds. O

gz +y) <1,

Taking into account that not all norms are polynomial norms we are asking if we can generally
approximate the norms by polynomial norms.

In the following, we show that, though not every norm is a polynomial norm, but any norm can be
approximated to arbitrary precision by a polynomial norm. A related result is given by Barvinok in
[18]. In that section, he shows that any norm can be approximated by the d-th root of a nonnegative
degree-d form, and quantifies the quality of the approximation as a function of n and d. The form he
obtains however is not shown to be convex. In fact, in a later work [[19], Section 2.4], Barvinok points
out that it would be an interesting question to know whether any norm can be approximated by the
d* root of a convex form with the same quality of approximation as for d-th roots of nonnegative
forms.
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The result below is a step in that direction, although the quality of approximation is weaker than
that by Barvinok [18]. We note that the form in Barvinok’s construction is a sum of squares of other
forms. Such forms are not necessarily convex. By contrast, the form that we construct is a sum of
powers of linear forms and hence always convex.

Theorem 4.3.2. Let || - || be any norm on R™. Then, for any even integer d > 2:
(1) There exists an n-variable convex positive definite form fq of degree d such that

d n n/d 1/d n
() el < 7 < el (v e Ry, (432
In particular, for any sequence {fq} (d =2,4,6,...) of such polynomials one has
1/d
lim J ) v e me
d—oo ||z]]

(ii) One may assume without loss of generality that fy in (i) is a nonnegative sum of d* powers of
linear forms.

Moreover, we also present recent concavity and convexity results for symmetric polynomials and their
ratios. Note that this part of this section is inspired from [164].

More precisely, our aim is to present the proof of the following convex type inequalities:

e (2 + y)P)] VP > [en(a?)]/PF + [ex(yP)]/P* (4.3.3)
(2 + ) /P) PR > [y (a/2)P/* - Ty (y /7 P/ (4.3.4)
@ ty) |5 [ el 17 [ el?) |7

[ekl((f’«" + y)p)} = [ekz(iﬂp)] * [ekl(yp)} (435)
hy((z +y)'/7) T [hy(zP)]70 [hy(yl/P) 7T
[m«x T y)l/m] : [hmxl/pJ [myw)] ’ (4.3.6)

for z,y € R, p € (0,1) and 1 <[ < k < n. In these inequalities e; denotes the k-th elementary

ex(z) = Z Hiﬂz

SCn],[S]=k i€S

symmetric polynomial
and 2P we mean the vector (7, ..., 2h).
We firstly present an important concavity result for e, the Marcus-Lopes inequality [102]:

ez t+y) . exln) | exly)
et 1@ +y) = eha() | ena()

1<k<n, z,ycR}. (4.3.7)

This inequality is used by Marcus and Lopes to prove the concavity of ek(:c)l/ k. Now, we give the
following concavity inequality:
ot f’ s [ ]3’ e, ] (435)
er—1((z +y)?) er—1(zP) er—1(yP)

We introduce the parallel sum operation which is an important element of the proof:

ziy:= (@ +y™HT zy>0.
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Lemma 4.3.1. The parallel sum is jointly concave on Ri. Moreover, for every p > —1, the p-parallel
sum x i y = [P : yp]l/p is jointly concave. Also, both : and :, are monotonic in both arguments.

Proof. The Hessian equals

1 1
o+ 1) —aPlyprl(gp 4 yp)*f*; aPyP(aP + yP) 2w 1
aPyP (P + yP) 2 r —gpHlyp=L(gP 4Py 2 )

which is clearly negative definite for p > —1. Monotonicity is clear from first derivatives. O
Observe that z:y =y :x and (x :y) : z =z : (y : 2), thus we extend the above notation and simply

write z1 t 29 : -ty =@z (@20 [0t (Xp—1 : ,)]]. However, the operation :;, is not associative if
generalized the same way. Thus, a more preferable multivariate generalization is the following:

(1, @) = [28  ah oo VP,
Lemma 4.3.2. Let f; : R™ — R, and fo : R™ — R be continuous concave functions. Then,

f1(z) :p fa(z) is jointly concave on R™ x R™2.

Proof. 1t is suffices to establish midpoint concavity. Since f; and fo are concave, we have

ﬁ(“é”)Z;ﬁuﬂ+;h@ﬂmmdhch;w>Z;ﬁ@”+;b@”

The function :, is monotonically increasing in each of its arguments and is jointly concave, therefore

() () (Mg (i)

%[fl(xl) p f2(y1)] + %[fl(m) p f2(2)],

which establish the joint concavity of fi(z) :p fa(x). O

>

Now we are able to present the main result from [164].

Theorem 4.3.3. Let 1 < k <n. Then, the function

ep—1(xP

Prpn(z) = {

is concave for x € R’ and p € (0,1).

Proof. We use induction on k and for k = 1, we have
¢1,n($) = (.7:]1) + xg + .-+ x%)l/p‘

which is clearly concave. We assume that ¢5_1,, is concave for some k£ > 1. The key step in our proof
is the following remarkable observation of Anderson et al [12]:

(5" 1)enr(x) = 1 1
Let Ug ::iJL——th U)o = . Uy g (s
R ) P M z_:ln—kﬂxf o1 ko),
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where z[; denotes the vector x with x; omitted. Using the previous representation we see that for
suitable positive scaling factors a, and b, we can write

1/p n
Pk <Z“kxp b 1n(5“[j])> = (Z

1/p
laxzj bmk—m(ﬂf[ﬂ)p) : (4.3.9)
=1

From induction hypothesis we know that ¢5_1 ,(-) is concave; thus, applying Lemma 4.3.2 we see that

9j(x) == (arz;) :p (bk¥r—1n(];)))

is jointly concave in z; and x[;) and thus in x. Consequently, we can further rewrite (4.3.9) as

1/p
¢kn <Zgj ) ’

which is clearly concave as it is the (vector) composition the coordinate-wise increasing concave func-
tion (3_; x?)l/p with the vector (g1(z),...,gn(x)), where each g;(z) is itself concave. O

Following the idea of Marcus and Lopez [102], who proved concavity of ek(x)l/ k we can now prove
(4.3.3), that is, the concavity of [e;(x?)]'/?, by leveraging the ratio-concavity proved in Theorem 4.3.3.

Theorem 4.3.4. The function x — [e(xzP)]/P* is concave for p € (0,1) and x € R

In the same vein, we easily obtain a proof to (4.3.5) which generalizes Theorem 4.3.3.

For any 1 <1 <k <n, then
ep(z) 1"
)

ex—1(zP

Dhin() = [
is concave for x € R} for p € (0,1). See [164].
Proposition 4.3.1. The multivariate p-parallel sum map
T — [xf:wgz---:xﬁ]l/p

is concave on R} for p > 0.

Proof. The proof is by induction on n. Assume thus that the claim holds for ]Ri fork=1,2,...,n—1.
Consider thus,

1
Sz, ... zp) =[x cxy - al]p.

From the induction hypothesis, we have that

1 1
= 2Sn 1(:61, ceey xnfl) + §Sn,1(y1, - ,ynfl). (4.3.10)

1
Snfl <2($1 + y1)7 DRI 92

1(UCTH +yn1)>

Thus, using the monotonicity of the :;, operation and (4.3.10) we get

o <;(x1 +y1),...,%(1:n +y")> - { [Sn1<;(331 +y1),---»%($n—1 +yn1)>]p : < Tnt 5 > }Up
1
2

1 1 P 1/p
Z{|:2Sn—1(x17'~7$n—1)+2Sn—1(y17--'7yn—1):| 2<21’n+ ) } -
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Now concavity of :, immediately yields

I:(Sn—l(xla ce. 73771—1) + Sn—l(yh cee 7yn—1)>p . (wn +yn>p:| 1/p

2 2
1 p ] P 1/p
> 2[{Sn1(9€1,---,$n1)} 1584 +2[{Sn1(yla--~7ynl)} +yﬁ] ;
establishing concavity of .S,,. Thus, by induction the said map is concave. O

In a similar way, we can deduce that the function z — ex(«P) is reciprocally concave for p € (—1,0)
and z € R’.. See [164]. Note also that that for any X a Hermitian positive definite matrix, the
function

1
X = —————, pe(-10),
(X PEEhY
is concave, where A(-) denotes the eigenvalue map.

Using the following representation for complete homogeneous symmetric polynomials

k
%E[({lxl fotba)f = S [ = ), (4.3.11)

we can deduce the proof of the following convexity result of McLeod [105]:
[z + )% < (@))% + [ ()] (4.3.12)
More precisely, using the fact that for any p > 1, k > 1, z,y € R’} we have
k1 1/pk " 1/pk . 1/pk
S(Zaew) | (X)) +(Xw) (43.13)
i j ij ij
we get the following two inequalities

[ae( + y)P 1P < ()P o+ [ ()PP

(4 )P) | P Tha(an) ] Ty Y
[hl((éﬂry)”)} = |:h1(l‘p):| [hl(yp)} '

Our previous estimates obtained in this doctoral thesis can be useful to continue this research subject.

4.4 A finite difference approach of Korn’s inequalities

In this section we introduce a completely new topic related to future perspectives of this doctoral
thesis. Note that this part is inspired from [61].

Korn’s inequalities represent a main tool in linearized elasticity theory, that proves useful not only
in connection with the basic theoretical issues such as existence and uniqueness, but also in a large
variety of applications.
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Korn himself considered only the case of vector fields vanishing on the boundary (see [88]-[90]). His
results were subsequently improved and extended by many people including Friedrichs [57], Gobert
[62], Duvaut and Lions [54], Ciarlet [41], [46], Kondratiev and Oleinik [86], Oleinik, Shamaev and
Yosifan [136], Horgan [70], Desvillettes and Villani [50], Fuchs [58], Neff, Pauly and Witsch [110], to
mention here just a few contributions in chronological order. There is by now a huge literature on the
subject: a search on the electronic database of Google lists about 19,400 references concerned with
Korn’s inequalities.

Our aim is to offer new very simple proofs of these inequalities via the finite difference method. We
follow the terminology and notation used in the classical book of Ciarlet [41].

Let © be a domain in RY, that is an open, bounded and simply connected subset with sufficiently
smooth boundary 9€2. We consider a smooth vector field f : Q — RY of components f; having the

Jacobian matrix Vf = (ggg) . The symmetric part of V f is the matrix V¥ f with entries
]

1 (0f; n Ofi
2 8xl 8$j '
Denoting by |V f| and |D*¥™ f| the corresponding Hilbert-Schmidt matrix norms, the original first

inequality of Korn states that, if f belongs to C}(Q, RY) (the space of continuously differentiable
fields with compact support), then

/|Vf]2dac < 2/ (VY™ f 2 dx. (K1)
Q Q

Friedrichs [57] noticed that this inequality follows from an elementary identity. In fact, when f is
C2(Q,RN), a twice applications of integration by parts yields

0fi 0f;, _ [ 0fi 0f

o Oz Ox; o Ox; Ox; 9,0

from which one derives the formula

sym 12 af;  9fi\°
/Q]Vy fI7de = Z/ (8;z 8:z:j> dx
1 af 0fi 0f;
N 2”2_:1 [/Q <8le> d+ o Oz; 81}Zd ]
af;\> al afz af
3 () e [ 2 g

= /|Vf| d:v+;/(divf)2dx

and Korn’s inequality (K1) is now obvious. Then a standard approximation procedure yields the
general statement: the inequality (K1) holds for all fields in the Sobolev space Hg(Q;RY).

In the next subsection we will present an alternative approach of Korn’s first inequality using finite
differences. The complexity of the proof is pretty much the same, and represent a bridge for a similar
approach of Korn’s second inequality (whose all known proofs are nontrivial).
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Theorem 4.4.1. (The second Korn inequality) Let Q be a domain in RN with Lipschitz boundary.
There exist of a positive constant C = C () such that

10 < € (1132 + IV f3:)  Jor all f € H'(@:RY).

Having Lipschitz boundary means that for any point a € 9€) one can introduce orthogonal coordinates
y = C(z —a), where C' is an N x N-dimensional constant matrix such that in coordinates y = (9, yn),
with § = (y1, ..., Yn—1), the intersection of 9 with the cylinder

Crr =A@ yn): [l <R, —LR<yn<LR},

is given by the equation y, = ¢(7), where p(g) statisfies the Lipschitz condition in {g : || < R} with
Lipschitz constant not larger than L and

QNCrr={y: |yl <R, —LR <y, <LR}.
The numbers R and L are assumed to be the same for any point a € 92 and depend only on €.

For convenience of the reader, we recall here some properties of functions defined in domains with
Lipschitz boundary.

Theorem 4.4.2. (See [136], Theorem 1.2, p. 4) Let Q be a domain in RN with Lipschitz boundary.
Then:

a) The embedding of H' () in L*(Q) is compact.

b) If Q € Q° and QO is a domain of RN, then each u € H () can be estended to Q° as a function
u € HY(Q°) such that
[l 710y < Cllull ),

where C' is a constant depending only on §2.
¢) Each function u € H'(Q) possesses a trace on O belonging to L*(0S)) and such that
[ullz200) < Cillull (o),

where C1 is a constant depending only on 2.

4.4.1 A proof of Korn’s first inequality

For simplicity, we restrict here to the 2-dimensional case and consider smooth vector fields f : Q — R?
of components f1 = fi(x,y), fa = fo(x,y) defined on an open square 2 = (0,a) x (0,a). Since Korn’s
first inequality is proved under the assumption that f has compact support, this particular shape of
) makes no loss of generality.

Let us consider the mesh of  associated to the equidistant division 0 = ap < a1 < as < --- < an = @
of [0,a], given by a; = ih, where h = %. Put also

Tij = fl((aiva’j))v Yij = fQ((aivaj))a VZ,] € {07 s ,TL}.
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Then the partial derivatives can be approximated by finite differences according to the formulas

Ot a5) o B0 i Oy o Tiaid — Tigod
0xq 2h O o
OF2 (g0 ay m Yiths —Yimtg Oz Wil — Yige1
8%‘1 1y ) 2h ) 8(132 iy Uy 2h

In order to make the discretisation more flexible to our purpose we embed Q into Q" = (—h,a+ h) x
(—h,a + h) and extend fi, fo with zero on Qj \ Q. It is worth noticing that for n sufficiently large

f1, f2 vanish on a rectangular corona {(z,y) € Q : d((x,y),00) < h}. Use the fact that fi, fo have

compact supports.

Accordingly, the mesh of 0 is enlarged to a mesh of Q" by considering the division points a; = ih,

fori e {—1,0,...,n+1}. Thus z;; =y, ; =0, for 4,5 € {-1,0,n,n + 1}.

Taking into account that

| sy = m i 37 pa)

0<i,j<n

the proof of first Korn’s inequality reduces to the proof of its discrete analogue:

Z (Tiv1j — Tio15)° + Z (g1 — i)

0<i,j<n 0<1,j<n
2 2
+ E (i1 — Yie15)" + § (Yij+1 — Yij—1)
0<i,j<n 0<1,j<n
<9 L Y . Y
S ($z+17j - 377,—1,]) + (yl,]+1 - ylv]—l)
0<i,j<n 0<1,5<n
1 2
+5 D @igen— @i+ i~ vie1g)
0<i,j<n

Equivalently, we have to prove that

Z (Tiy1,5 — xi—l,j)Q + (Y1 — l/i,jfl)2
0<3,j<n

+ 2(%i j41Yit1,5 T Tij—1Yi-1,j — Tij+1Yi-1,j — Lij—1Yi+1,5) > 0.

Indeed, taking into account that fi, fo vanish on W\ Q, we have

E , Tij+1Yi+1, = E , Ti-1,jYi,j—1,

0<i,j<n 0<i,5<n

E Tij—1Yi—-1,5 = E Li+1,5Yi,5+1,
0<i,j<n 0<i,j<n

E Tij+1Yi—-1,5 = E Li+1,5Yi,5—-1,
0<i,j<n 0<4,j<n

§ Tij—1Yi+1,5 = g Ti—1,5Yi,5+1,

0<i,j<n 0<i,j<n

(4.4.1)

(4.4.2)

(4.4.3)
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which yields

Z (Tis1j — Ti15)" + Wit — Yij—1)’
0<ij<n

+ 2($i,j+1yi+1,j + T 1Yi—1, — Tij+1Yi—-1,5 — Ii,j—lyiﬂ,j)

2
= Y (@i — Tio1 + vige —Yigo1)” = 0.
0<ij<n

Hence, the proof of first Korn’s inequality is complete.

4.4.2 The proof of second Korn’s inequality

As in the precedent subsection we restrict ourselves to the two dimensional case, by considering
Q= (0,a) x (0,a). According to Theorem 4.4.2 this particular shape of {2 covers the general case.

Under these assumptions, the second Korn’s inequality asserts the existence of a positive constant
C = C(Q) such that,

o o, (00N (0AN? | (0\" | (0f2)°
/Qf1 +f2+<(%5> +<8y> +<8x> +<8y> dxdy
2, 2 of1\° 0f2\> 1 (0fi  0f2\’
for all f = (f1,f2) € H'(Q,R?).

We consider the same kind of meshes for  and respectively Q", imposing the following conditions
at the boundary points

T_1j = X045 Tntl,j = Tngs Yi,—1 = Yi,05 Yin+l = Yin 1,j=0,...,n.

The discrete form of the second Korn’s inequality is

4h? Z (xfj + y?j) + Z (Tig15 — l'ifl,j)Z + Z (Tij11 — l’i,jfl)2

0<i,j<n 0<i,5<n 0<1,5<n
2 2
+ E (Yit1, — Yi-14)" + § (Yij+1 — Yij—1)
0<i,j<n 0<1,j<n

<C|4n® Z (=3 +u) + Z (Tig1y — Tio14)° + Z (Yij+1 — Yij—1)’

0<i,j<n 0<i,j<n 0<1,j<n

+- Z (@ijr1 — Tij—1 + Yit1,j — yzel,j)2 . (4.4.5)
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Note that we have the following estimates

E Tij+1Yi+1,5 = E Ti—-1,5Yi,5—1

0<7,j<n 0<i,j<n
n+1 n+1

n n
- E T_1,;Y0,j-1 — E Ti—1,0¥i,—1 + E Tn,jYn+1,j—1 + E Ti—1n+1Yin,
j=0 i=0 j=1 i=1

E Tij—-1Yi—1,57 = E Tit+1,5Yi,54+1

0<i,5<n 0<i,j<n

n n n—1 n—1
- § Tit1nYin+1l — § Tn+1,jYn,j+1 T E Tit+1,—1Yi,0 E T0,jY—1,j+1,
i=0 =0 i=—1 j=—1

E Tij+1Yi—-1,5 = E Tit+1,5Yi,5—1

0<i,j<n 0<ij<n
n+1 n—

n n 1
- g Tit+1,1Yi,—1 — g Tn+1,jYn,j—1 + E 20,Y-1,j—1 + Tit1n+1Yin,
i=0 =0 j=1 i=—1

E Tij—1Yi+1,5 = g Ti—1,5Yi,5+1

0<i,j<n 0<i,j<n
n+1 n—1

n n
- g T-1,5Y0,5+1 — g Ti—1nYin+1 + g Ti—1,-1Yi,0 + Tn,jYn+1,5+1-
=0 i=0 i=1 j=—1

Hence we have that

E ($i,j+1yz’+1,j + i —1Yi—1,5 — Tij+1Yi—1,j — xi,j—lyiﬂ,j)
0<4,5<n

= g Ti-1,jY%i,5-1 T Ti+1,jYij+1 — Tit1,jYi,5-1 — Ti-1,jYi,j+1

0<i,j<n
n+1 n+1
+ E (Tnj — Tng—2)Ynt1,j-1+ E Zi—1 41 Yin — Yi—2,n)
j=1 i=1
n n
Y @it1n = Tic10)Yintt — Y a1 (Ungt1 — Ynj-1)
i=0 Jj=0
n n+1
+ g (Tit1,0 — Tim1,0)Yi,—1 — E (o, — 0,j—2)Y—1,j—1
i=0 j=1

n+1

n
) w1 (o4 — Yoi-1) — D Tic1,-1(Yio — Yi-2,0)-
=0 i=1
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Thus (4.4.5) is equivalent to

C
ARA(C=1) Y @ty + g D (@i — T Ty — vigo1)’
0<ij<n 0<i,j<n
C
+ <2 - 1) > ((fmm‘ —zio13)” + (@i — 2ig-1) + Wity — Yi-15)” + Gige1 — yi,j—1)2)
0<i,j<n
n n
+ CZ(ﬁvn,jH — Znj—1)Ynt1,j + C Z Tin+1(Yit1n — Yie1n)
i=0 i=0
n n
-C Z(l‘z‘ﬂ,n — Ti—1n)Yint1 — szn+1,j(yn,j+l — Yn,j—1)
i=0 i=0
n n
+ CZ(%’H,O — 2i-1,0)¥i-1 — CZ(%JH — %0,j-1)Y-1,j
i=0 i=0
n n
+CY w1 (W41 — Yo-1) — C D wi—1(Yigr0 — Yi-10) = 0.

§=0 i=0

By using a discrete type Green formula for the last 8 terms (provided by the discretization of a
curviligne integral on the boundary of the square) we have to prove that

C
ARP(C—1) > (@F+u) + 3 D @iy — Ty +Yige1 — Yig1)”

0<ij<n 0<i,j<n
C
* <2 - 1> > <($z’+1,j —2io15)" + (@i — @) + Wiy — vio15)? + Wi — ymfl)z)
0<i,j<n

—C > (@irry = wic1) Wigr1 — Yig-1) — (@igr1 — i) Wir1y — Gio1y)) = 0.
0<ij<n

Since we have that

C > (i1 — wim1) Wige1 — Yig1) — @ijr1 — Tij1) i1 — Yi-1,5))
0<ij<n

c 2 2 2 2
< 0} Z ((wz‘+1,j —xi—1)" + (@ij41 — Tij—1)" + Wirr; — Yi-15)" + Wij+1 — Vij—1) ) ,
0<i,j<n

it is sufficiently to prove that

_ Z ((xi+1,j —ai1)? + (iger — Tig1)? 4 Wisry — Yio14)” + (Wija1 — yi,j—1)2> > 0.
0<i,5<n

Notice that for any C' > 2 depending on norm of the function and of the norm of the gradient of
the function we can deduce that the previous inequality hold. This dependence will be a subject of a
future work.
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4.5 Weak majorization in global NPC spaces

In this section we introduce the concept of weak majorization in the framework of some spaces with a
curved geometry (such as the global NPC spaces). The key point is given by a perturbed barycenter
concept, defined by a minimization argument. Then, by using a generalized concept of majorization
in a global NPC space (for which we can prove Hardy-Littlewood-Pélya’s majorization theorem) we
can study the concept of weak majorization in this context. Note that this part is inspired from [120].

In the following we study a perturbed barycenter concept in a space with global nonpositive curvature,
by using a minimization procedure. This notion of perturbed barycenter is the main ingredient used
to introduce the concept of weak majorization in global NPC spaces.

Let a > 0, y € M and let pu be a probability measure defined on a global NPC space (M, d), such
that p € Po(M).

We shall make use of the process of augmentation of a discrete probability measure p = Y " | pidy,
by adding a new point y in its support. This consists in choosing arbitrarily a positive number a > 0
followed by a reallocation of the mass of p to the point y, in other words, by replacing u by the

probability measure
n

e+ ——35,.

= 0.
Hy,a P l+a @ 14a

We define the barycenter of the augmented measure .  as the point given by the formula

1
bar(iy.«) = arg min/ (d*(z,2) + ad®(z,y)) du(z)
zeM M

1 n
= arg min§(z wi(d*(z, i) + ad®(z,y))
zeM i—1

and Jensen’s inequality associated to it asserts that

1 - o
b)) < g Daf ) + 1 10) (15.1)
for any lower semicontinuous convex function f: M — R.
In the particular case when M = RY and py = --- = p, = @ = 1/n, we have
X]+ -+ Xy X|+ o +Xpt+Yy
b =—— —and b =
ar(p) - and bar(jy,q ) ] ;

so that the inequality (4.5.1) reads as

X|+ -+ Xyt Yy n X] 4+ Xy 1
< .
f( nt1 >_n+1f< n >+n+1f(Y)

The extension of the concept of weak majorization to the context of global NPC spaces is based on
the process of augmentation described in the previous sentences.
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Definition 4.5.1. The relation of weak majorization,

m n
D Niba, <NPCw Y 150y, (4.5.2)
i=1 j=1

means the existence of a vector z € M, of a string o, ...,an of nonnegative numbers and also of an

m x n-dimensional stochastic on rows matriz A = (a;j);; that verify the following two conditions:

m
Mty = Zai]’)\i, j = 1, ey N (453)
i=1
and "
1
x; = argmin— Zaij(cﬂ(ac,yj) + oid*(z,2)), i=1,..,m. (4.5.4)
zeM 2 j=1
When a1 = -+ = ay, = 0, the definition of weak majorization reduces to that of majorization.

The existence and uniqueness of the solution for problem (4.5.4), when « = 0, is assured by the
fact that the objective functions are uniformly convex and positive. See [80, Section 3.1], or [163,
Proposition 1.7]. We prove now the existence and uniqueness of the perturbed barycenter for o > 0.

Proposition 4.5.1. Let a« > 0, y € M and let pu be a probability measure defined on a global NPC
space M, such that € Po(M). Let us consider

Ty(z) = /M d?(z,2) + ad?(z, y)du(z) (z e M).

Then, T, has a unique minimizer on M.

Proof. In [163, Proposition 2.3] has been proved that the function z — d?(z,z) is uniformly convex.
Consequently, denoting by z; the joining geodesic of the points zg, z; we have that

Ty(z) = /M d?(z, ) + ad®(z, y)du(z)

<(1- t)/ d?(zg, ) + ad®(zg, y)du(z) +t/ d*(z1, ) + ad®(z1, y)du(z)
M M
—t(1 = t)(1 + )d*(z0, 21)
< (1 —)Ty(20) + tTy(21) — t(1 — t)d*(20, 21),
which precisely means that T is uniformly convex.
Moreover, the continuity of the distance function z — d?(z, ) implies the continuity of Ty, hence by

using in addition the uniform convexity, we deduce that T}, has a unique minimizer. O

The agreement of the weak majorization concept in different settings makes the objective of the
following result.
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Theorem 4.5.1. If p = %Z?:l 0z, and v = % Z?Zl dy,; are two discrete probability measures on R

such that x1 > x9 > --- > x, and y1 > Yy > -+ > yYn, then

U =<Npcw V if and only if @ <grpw V

Proof. Suppose that © <ypcw V. According to Definition 4.5.1, there exist a real number z, a string

ai, ..., a, of nonnegative numbers and also an n x n-dimensional doubly stochastic matrix A = (ai;)i;
such that
x; = argmin_— Zam (x —y;)? + iz —2)?), fori=1,...,n,
zeR ] 1
equivalently,
n
Ay + iz
a:i:zjl 97 ‘ fore=1,...,n,
1+ o
which implies
1 " (67}
o(x;) < Hai;azw(%) P

Now, by choosing
n
== min Y min(y 0),
J:

the following relation holds

x; = argmin— Zaw —y) tai(z—2)?), i=1,...,m, (4.5.5)

zeM ] 1

where (o;); are some positive real numbers. Now, using the fact that y < 0, a simple calculus gives
that

D i1 0ijY; ,
g < 2= 00 _Zawy] (i=1,...,n).

1+ o
If we denote by T; = Z?:l a;jyj, since (aij)iyj is doubly stochastic it follows that (Z7,...,T,) <
(y1,--.,Yn). Hence the following sequence of inequalities holds
X1 S x1 S Y1,

1+ 22 < T1+ 722 < Y1+ Yo,

Tit AT ST+ + T =Y+ + Yne

Suppose now that p <pgrpw v. By replacing p and v respectively by

1 n+1 n+1
= Oy, and v = E
M n _|_ 1 Z i Yi
i=1
. n+1 n
where 41 =min{x1,...,Tn,Y1,.. ., Yn} = Yn and Yp41 =D ;] i — » -, y; we have

i <HLPV
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and this yields the existence of a doubly stochastic matrix A = (a;;);; such that

n+1
xi:Zaijyj forizl,...,n-i—l.
j=1
Therefore
1 n
T; = argrlging Z aij((z — yj)2 + aipt1(z — yn+1)2), fori=1,...,n
xre -
7j=1
and .
Zaij <1 fori=1,...,n,
j=1
and the proof is finished. O

The relevance of the study of such perturbed minimizers can be viewed in different ways. One of
them, consist in the fact that frequently we need to consider a minimizer for perturbed functionals,
and this minimizer is the solution of a partial differential equation. On the other hand, the added
norm term can be seen as the distance to a fixed point, which in optimization theory has the meaning
to add a fix point which will be taking into account in our minimization problem.

Based on the above definition, we are able to give a nice version of Hardy-Littlewood-Polya’s inequal-
ity and to extend classical results from majorization theory. For more details, see [126]. On the other
hand, the concept of weak majorization is a completely open an very interesting problem in such a
general settings. We are now in position to prove an important consequence, which gives a discrete
version of Jensen’s inequality in the context of global NPC spaces.

Theorem 4.5.2. (A discrete Jensen’s inequality) Let ¢ : M — R be a lower semicontinuous convex
function and p € Pa(M), where p is a discrete probability measure p =Y " | pidz,, with > 4 p; = 1.
The following inequality holds

p(bar(u;a)) < 7 ia ; pip(Ti) + 1jiLofp(y)- (4.5.6)

Proof. Firstly, note that

1 n
bar(u; o) = arg min— ZM (d*(z,2;) + ad?(z,y))
zeM 2 i—1

lta~( i Qfli
:arzger]\r/l[m 5 Z <1+ad (z,2;) + 1—1—04d (z,)

=1

1 2n
= arg min— Nd? (2, y3),
zeM 2 ; ’ ( 2)

where \; = li—a, Nitn = Hia, y; = x; and yj1n, =y, for each i =1,... n.

Hence, we have proved that

2n
bar(u; a) = bar(\), where A = Z [i0y, -
i=1
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By using classical Jensen’s inequality from [163, Theorem 6.2], we have that

o (bar(p; ) = p (bar(X)) < Y Nig(y;)
i=1
B - QL 1 - ' ‘ @
—; +Zl—|—a 1+a;uzs@(wz)+1+aw(y),
and the proof of (4.5.6) ends. O

Another consequence consist of a a generalization of Sherman’s majorization results.

Theorem 4.5.3. (HLP-Sherman) Let ¢ : M — R be a convez function and let

m n
Z Aibz; <a Z Mjéyw
i=1 Jj=1

as in (4.5.2). Then the following inequality holds

m

SN+ an)p(a) < uielys) + o) Y Nici. (4.5.7)
=1 i=1

i=1

Proof. Taking into account (4.5.4) and (4.5.6) we have that

n

1 Q; .
i — a0y, =1,...,m.
plai) < 7 e 3$ W) + 1) G m.)
Hence, it follows that
D A+ an)e(@) <D0 Nage(y) + Y dicip(y)
i=1 i=1 j=1 i=1
—Zugso vi) + ¢y ZA%
j=1
and the proof is finished. O

Remark 26. Note that (4.5.7) gives in fact that

m n 1 a
\iby, < !5, 4+ ——6,.
Z e j:11+ay'7+1+ay

We have now introduced a variational technique for the definition of weak majorization. At least
for our knowledge, this is the first time when the weak majorization is written in term of minimizers.
Moreover, the point y = 0 is essential in the theory of weak majorization on R, which remind us about
a nice characterization of weak majorization in terms of convex and nondecreasing functions. In fact,
the definition of a nondecreasing function is essentially based on the distance to the origin (the same
point which appears in the above assertion).
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Thus, we are now in position to state an important consequence which prove that our definition is
natural and well posed. We present an extension of Tomic-Weyl result for weak majorization in global
NPC spaces.

Theorem 4.5.4. Let us consider that

1« 1
EZ% < ﬁ26yj. (4.5.8)
=1 7j=1
Let ¢ : M — R be a conver function which verifies

o(ri)) > ply)  (E=1,...,n),

where y € M is the point appearing in the definition of (4.5.8). Then the following inequality holds
n n
> o) <> ey (4.5.9)
i=1 i=1

Proof. From (4.5.8) we infer the existence of an y € M, a € R’} and a matrix (A;;);; such that

R .
T = argming E Aij (d2(z,yj) + aid?(z,y)) i=1,...,m.
zeM ;
J=1

From (4.5.6) it follows that

1 n
@(%) < m Z )\z‘jﬁp(yj) + ‘P(y)a
3 _]:1

Q5
1+Ozi

n

U+ a)p(@) < ey) +9(y) Y i,
i=1 j=1 i=1

D ol@) + D () <D ey) +ey) D,
=1 =1 7j=1 =1

hence, since ¢(x;) > ¢(y) we obtain that the conclusion. O

Note that, the hypothesis p(x;) > ¢(y) is nothing else than the nondecreasing property of a function
in R+.

In this context, we can consider the perturbed minimizers, our a-majorization, into the spaces with
global nonpositive curvature. The existence and uniqueness of such perturbed minimizers in a global
NPC space, is a difficult task but using the above remarks we are able to be succesfully implemented
(see a detailed approach of the notion of barycenter Sturm [163, Proposition 1.7]).

The results from this section can be also extended in the framework of nonpositive weights, but this
will be the subject of a future work.
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